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Abstract
Daily fantasy sports (DFS) are weekly or daily online contests where real-game
performances of individual players are converted to fantasy points (FPTS). Users
select players for their lineup to maximize their FPTS within a set player salary
cap. This paper focuses on (1) the development of a method to forecast NFL
player performance under uncertainty and (2) determining an optimal lineup to
maximize FPTS under a set salary limit. A supervised learning neural network
was created and used to project FPTS based on past player performance (2018
NFL regular season for this work) prior to the upcoming week. These projected
FPTS were used in a mixed integer linear program to find the optimal lineup. The
performance of resultant lineups was compared to randomly-created lineups. On
average, the optimal lineups outperformed the random lineups. The generated
lineups were then compared to real-world lineups from users on DraftKings. The
generated lineups generally fell in approximately the 31st percentile (median).
The FPTS methods and predictions presented here can be further improved using
this study as a baseline comparison.
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1 Introduction
Since 2003, fantasy sports have seen a 290% increase in users [1]. There is a
growing market for users to take on the role of a team manager by creating virtual
sports teams and competing online. Users may take part in contests that span
an entire season, a week, or even a single game. Daily fantasy sports (DFS) are
typically weekly or daily contests that allow users to create a lineup of players
before the start of a real game. Real-game statistics of players are converted to
a scoring system known as fantasy points (FPTS). The summation of selected
players’ FPTS are ranked among competing lineups, and the top 1% to 50% of
users may receive a payout. Multiple popular online platforms cater to DFS,
including DraftKings®, Fan Duel®, and Yahoo! Sports®. Each platform features
several contest styles as well as moderately different scoring systems and rules.
Users may enter contests for leagues such as the National Football League (NFL),
Major League Baseball (MLB), and the National Basketball Association (NBA).
For this paper, “player” is used to refer to the athletes competing in the real-world
game while “user” is employed to refer to the people generating the fantasy drafts
and entering them into “contests.”

DFS users strive to create the best possible lineup of players before the start of
a contest. However, unlike other forms of fantasy sports that commonly feature a
preseason draft that allows a player to be on only one user’s lineup, DFS allows a
player to be on multiple users’ lineups. For most DFS, each player is assigned a
salary and users have a salary cap restriction on their lineup. As with traditional
fantasy sports, there are a specific number of positions that must be filled on the
lineup. Generating a DFS lineup can thus be posed as a resource allocation
optimization problem: specifically, a Stochastic Knapsack Problem (SKP). A
general Knapsack Problem is a problem of filling a knapsack with the most
valuable combination of objects – each with its own value and volume – without
exceeding the allowable volume of the knapsack. An SKP adds further complexity
as here, the value of each object is uncertain before it is selected for inclusion
in the knapsack. In DFS, the lineup can be thought of as a knapsack with its
“volume” determined by both the salary cap and required player positions. The
available players are the “objects” with their value determined by their FPTS and
their “volume” as their salary and position. Since the lineup is set before the start
of the game, players’ FPTS are uncertain prior to the knapsack being packed [2].

Predicting the number of FPTS that a player will earn (among other human
performance metrics) is a difficult, multi-factorial endeavor. Machine learning
techniques, specifically neural networks (NN), have been applied previously in
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a range of sports predictions. Neural networks have been previously used for
simulations as a comparison against recruiting managers in recruiting new rugby
players [3], predicting the outcome of NBA [4] and NFL [5] games, predicting
the performance of young [6] and Olympic swimmers [7], recruiting javelin
throwers [8], predicting javelin flight [9], and predicting the performance of
cricket players in upcoming games [10]. The predictive power of NN is limited by
the data available and the relationships among the input and output data. However,
in the past, data analysis using NN has produced results capable of predicting
trends in athletes and teams.

Specifically in football, previous work has been done on lineup generation
for season-long and daily fantasy contests. One DFS study developed multiple
statistical models to predict NFL quarterback FPTS using a backwards stepwise
regression, support-vector machine regression, regression tree, random forests,
boosting, artificial neural networks, and principal components regression finding
that some models predicted FPTS more accurately than websites people rely on
for lineup selection [11]. This work shows a promise for determining player value
using machine learning paired with other statistical modeling methods. However,
the approach determined only quarterback FPTS without addressing the FPTS
of the remaining lineup positions. This limits its application in DFS contests in
selecting a weekly lineup. Unlike DFS drafts, a season-long NFL fantasy contest
requires users to select and draft a lineup that is used week-over-week during
the season. One study developed an analysis of historical data from multiple
seasons to determine player value and using a mixed integer program found an
optimal lineup [12]. Another study of the seasonal NFL fantasy draft considered
a heuristic approach by assuming the opponent’s position needs and drafting
strategies to select the most valuable lineup [13]. A DFS draft, however, requires
weekly FPTS predictions that adapt as the season progresses.

Selecting players for an optimal lineup has been previously done with integer
linear programming [2, 14–16]. In these works, models assumed a normal
distribution of a player’s FPTS and that player FPTS were independent of one
another. These assumptions simplified the application of integer program to
optimize lineups. However, for example, the number of receptions a wide receiver
has is directly linked to the number of completions a quarterback throws: there
is certainly FPTS correlation among players on the same team that cannot be
neglected. One integer program [2, 15] focused on maximizing the expected
payout and maximizing the expected FPTS while applying constraints on the
lineup. Similar studies conducted by the same authors submitted lineups to
MLB DFS contests and simulated NFL DFS contests by generating random and
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optimized lineups using an integer program maximizing expected FPTS [2, 14].
Another optimization study used post-game cycling stats to select an optimal
lineup using mixed integer programming as a post comparison against the winning
fantasy lineup [16]. However, this integer program would not be applicable to a
pre-game scenario of selecting the most valuable athletes before a contest.

These previous works have not shown a method and real-world testing for
generating optimal weekly lineups for DFS. This research focuses on developing
a methodology to (1) determine the expected performance of players based on
objective historical data – here, from the 2018 regular NFL season – and (2)
generate an optimal lineup that maximizes expected FTPS for the upcoming
week’s DFS contest. This paper considers NFL Guaranteed Prize Pool (GPP)
“classic” style contests where lineups are selected from a list of eligible players for
the upcoming Thursday through Monday games. GPP refers to contests with a set
entry fee, and users get a share of a predetermined prize pool that may pay out to
the top 20% of lineups. Each player is assigned a position (i.e., Quarterback (QB),
Running Back (RB), Wide Receiver (WR), Tight End (TE) and Defensive Special
Team (DST)) as well as a salary by DraftKings. Note that DST is a team’s
entire defense and special teams. Also, note the salary is determined weekly by
DraftKings and is not equal on a player’s real-world salary. Instead, a player’s
salary is influenced, in part, by their previously-earned FPTS and their selection
popularity among users in previous weeks [17]. DraftKings’ GPP “classic” style
format enforces a $50,000 salary cap and a lineup constructed of 1 QB, 2 RB,
3 WR, 1 TE, 1 DST and a “Flex” player. The Flex player can be a RB, WR
or TE. However, this is not meant to imply that this is the only style of contest or
platform on which the methodology could be applied. Players earn FPTS based on
their position and real-world performance in the week’s game. For example, a WR
will receive 1 point per reception, 0.1 points per yard before or after the catch and
6 points for a touchdown. The full formula for earning points is enumerated on
the DraftKings website, however, the specifics are not pertinent for this method.

Objective player and team data were collected (Sec. 2.1) and used to train a
NN to predict weekly player FPTS (Sec. 2.2). The predicted FPTS of players was
used in a linear program to generate the optimal lineup expected to maximize total
FPTS (Sec. 2.3). The generated lineups were then compared to randomly-created
lineups (Sec. 3.2) and real-world user lineups (Sec. 3.3). The performance in the
real-world contests can be used as a baseline comparison for future improvements
to this methodology (Sec. 5) or competing methods.
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2 Methods
The generation of a lineup follows a four-step process of (1) collecting and
aggregating player data (Sec. 2.1), (2) training a Neural Network (NN) to project
FPTS (Sec. 2.2), (3) using the trained NN to project player FPTS in the upcoming
games, and (4) using mixed integer linear programming (MILP) to generate an
optimal lineup that stays within contest’s salary and position constraints (Sec. 2.3).
The entire process is shown as a flowchart in Fig. 1. All computations, simulations
and statistical analyses used in this paper were performed in Matlab (R2018b,
Natick, MA).

2.1 Data collection & aggregation
Features believed to be relevant predictors of player’s upcoming performance
were selected a priori and used consistently over the season. Each position
has unique ways to earn FPTS, and some positions are likely to earn more
FPTS than others such as a quarterback that is involved in nearly all offensive
plays. A player’s past weeks’ FPTS may be a first good indication of future
performances [18]. Point differentials (the difference in points scored by the
player’s team to points scored by the opposing team) may be positively correlated
to a player’s earned FPTS for that game. Similarly, observing offensive- and
defensive rankings may predict how well a player’s team is expected to do against
the opposing team’s offense or defense [19].

The location of the game is also expected to affect the player’s psychological
state and performance [20, 21]. During a home game, a player has home
advantage including more fans and a familiar environment. During an away game,
the player is expected to be at a disadvantage. The latitudes and longitudes of
games or direction of travel may affect a player’s circadian rhythm [22]. Likewise,
playing conditions such as a change in elevation or climate may affect a player’s
performance.

The spread and over/under are both representations of how well teams
are expected to do according to professional oddsmakers. Betting lines have
been shown to predict the outcome of games more accurately many statistical
models [23]. This list of features will be modified a posteriori to improve its
performance for the next season (in future work: Sec. 5).

Relevant data were collected, organized, and utilized to make the FPTS
predictions. Both player and team data were collected from the 2018 NFL regular
season over 17 weeks. Data were collected from multiple sources shown in
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Figure 1: The forecasting of player FPTS and generating a lineup is a four-step
process followed by lineup performance validation. Aggregator: The compiling
and sorting of relevant historical player and team data for training the NN.
Neural Network: The training of a network to predict NFL player FPTS using
data aggregated. Model: Once the NN stops improving its output, it creates
a model with which new features may be used to predict player FPTS. MILP:
Player predicted FPTS are used with constraints defined by DraftKings to find a
lineup that maximizes FPTS while staying within the constraints. Validation: The
optimized lineup performance is compared to randomly generated lineups as well
as real-world contest lineups.

Table 1. Data from these sources were aggregated into Excel and then arranged
based on player and week of play. A master list was compiled from DraftKings
draftable (i.e., have an assigned salary for the upcoming game) players.

Player positions were assigned a binary categorical value. Assigning integer
values (e.g., 1-5) to positions, may mislead the NN as there would be the
implication these values are ordinal. Instead, positions were assigned five
columns of categorical binary values for a QB, RB, WR, TE, and DST. Each
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Table 1: Player and Team Data Resources.
Website Data Procured
draftkings.com FPTS and Salary
rotoguru1.com Player Name, Position, Team, Team Schedule
fantasydata.com Vegas Lines, Over/Under, and Spread
fusiontables.google.com Latitude and Longitude of Games
footballoutsiders.com Team, Offensive, and Defensive Ranking
aussportsbetting.com Points Scored
foxsports.com Team Bye Week

player was given a respective “1” in the corresponding position column or a “0”
otherwise.

Four-week moving windows were created to use recent data for training the
NN. These windows refer to a fraction of the season’s data: For example, “window
one” includes data from weeks one through four and “window two” includes data
from weeks two through five. In total, fourteen windows span a season. To
implement this moving window there must be at least four weeks of games played.
These four weeks of play allow for the training of a NN to use with the upcoming
window (Sec. 2.2). For the purpose of training the NN, players must have earned
FPTS for game four of a window. This will ensure the NN has a target value. For
players to be included in a window, they must have played at least four games
over the past six weeks and must be draftable. These six weeks allow players to
have two weeks of data replaced due to bye weeks or minor injuries. Increasing
the window size will ultimately cut the player pool for lineup generation as it
increases the proportion of players who have missed more than two games. To
train a NN, two sets of data were made for each window including the features
and target data. The features include the known data before the start of game four
in a window, and the target data are the actual FPTS scored in the last game of a
window.

2.2 Calculating expected fantasy points
A NN was trained to predict the FPTS for each player in the upcoming Thursday
through Monday games using the data collected and organized in Sec. 2.1. A NN
is a type of machine learning process loosely based on the behavior of neurons
in the brain. Very simply, machine learning is a regression technique capable
of myriad relations between the input and the output variables. NNs can be
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Table 2: Training Data: Neural network training data set for each player including
43 features and 1 target. Data sets are categorized by two input data sets of a
target that is represented by features. Each variable can be identified as being of
a certain data type real, integer (hierarchical), or binary (categorical). Variable
Number represent the number and location of variables in each data set. Game
4 refers to the upcoming week of matches while Games 1-3 refer to the three
previous weeks.

Data Set Variable Number Data Type

Features

Position (5 categories) 1-5 Binary
Game 1-3 FPTS 6-8 Real
Game 1-3 Point Differentials 9-11 Integer
Game 1-3 Team Offensive Rank 12-14 Integer
Game 1-3 Team Defensive Rank 15-17 Integer
Game 1-3 Opponent Offensive Rank 18-20 Integer
Game 1-3 Opponent Defensive Rank 21-23 Integer
Game 1-4 Home or Away 24-27 Binary
Game 1-4 Point Spread 28-31 Real
Game 1-4 Over/Under 32-35 Real
Game 1-4 Latitude 36-39 Real
Game 1-4 Longitude 40-43 Real

Target Game 4 FPTS 1 Real

composed of different architectures that vary the structure and the method in
which data are analyzed. A two-layer feed-forward neural network is made up
of three layers: an input layer, one hidden layer, and an output layer. Layers
in a NN are made up of “neurons” (also referred to as “nodes” or “units”) that
connect each neuron to the subsequent layer’s neurons. Both the hidden and
output layer perform a weighted average based on the weights and biases assigned
to each neuron. The hidden layer uses an activation function that accounts for the
non-linearity of the input data and feeds it into the output layer. Similarly, the
output layer uses a linear function to yield an output. It “learns” by progressively
adjusting connections between neurons to learn from the given data. Here, a
supervised learning approach guides the network to a specific solution by defining
“features” (input) and a “target” (output) data set.

Features and their corresponding target as defined by the user are separated
into three sets a training, validation, and testing set. To decrease MSE between the
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Figure 2: Schematic of Neural Network architecture. This model used 43 features
with a single hidden layer of 19 neurons to output 1 FPTS value for the upcoming
week.

target and outputs, the NN adjusts the weights and biases according to the learning
algorithm used and obtains a new output for both the training and validation
set. It progressively adjusts the weights until the network stops improving on
the validation set. The model may then be used with new data to determine an
output when given the same set of features.

For this particular model, the features are the 43 listed and described in
Table 2, and the one output is the FPTS for the upcoming game. Some features
may be redundant individually but may help the model when correlations are
made to other features [24]. The training window includes all known data
before the start of a game (features) and the outcome player performance of the
game (target). NN modeling was implemented using nftool in Matlab. The
toolbox implements a two-layer feed-forward network with one 19-node hidden
layer and an output layer. The hidden layer uses sigmoid hidden neurons, and
the output layer uses a linear output. To determine performance, the tool uses
mean squared error (MSE) between the true target and output from the network-
in-training. A network schematic is shown in Fig. 2.

The final parameters and, consequently, the accuracy of the trained NN model
are sensitive to a number of factors. These include, but are not limited to: the
number of hidden layers, number of neurons, selected training algorithm, the ratio
of training- to validation data, and which data are included in the training set
versus the validation set. Some mixtures of the data may yield better predictions,
on average, of the output than others. When making relationships among input
data for a specific response, the most prominent nonlinear NN technique uses
hidden layers trained with back-propagation of error [25]. One hidden layer of 19
neurons and the Bayesian regularization backpropagation learning algorithm [26]
was employed for this NN model. In small-scale tests, too few or too many
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neurons degraded performance by under- or over-fitting the data. Another learning
algorithm, Levenberg-Marquardt backpropagation [27], ran faster but did not
perform as well. The model was created using 80% of the data for training and
20% for validation. To predict FPTS for week five, the NN is trained with window
one features and target from weeks one through four. The testing set uses weeks
two through five features only from window two. These features allow the trained
NN to predict the FPTS of game four (week five) in window two.

2.3 Lineup generation
With the NN model now trained, FPTS for each draftable player in their upcoming
game can be predicted. In this step, the lineup that maximizes the expected FPTS
and adheres to the salary and position constraints is generated. For this contest – as
introduced in Sec. 1 – the total salary may be at most $50,000 with a nine-player
lineup consisting of one quarterback (QB), two running backs (RB), three wide
receivers (WR), one tight end (TE), one flex (may be a RB, WR, or TE), and one
defensive special team (DST). A mixed integer linear programming (MILP) is
used for this maximization task.

The MILP finds the values for a vector of binaries, x, that maximize the
expected FPTS of the lineup. A value of “1” at the ith position in x designates the
ith player on the list being selected for the lineup while “0” means not selected.
Vectors f and S, corresponding to the predicted FPTS and salary of each player,
respectively, were created. The dot product of these vectors and x are calculated
to find the lineup’s predicted FPTS and salary. Position constraints were enforced
by ensuring that the total selected players for each position add up to the required
number. The objective function and constraints are shown mathematically in
Eq. (1).
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min
x

(−fT x) subject to



xi ∈ {0,1}
ST x ≤ $50,000

∑
i∈QB

xi = 1

∑
i∈RB

xi = nRB

∑
i∈WR

xi = nWR

∑
i∈T E

xi = nT E

∑
i∈DST

xi = 1

(1)

The MILP was run three times: once for each possibility of the flex player’s
position (RB, WR, or TE) by changing the values of n each iteration as follows:

nRB = 2, nWR = 3, nT E = 2,

nRB = 2, nWR = 4, nT E = 1,

nRB = 3, nWR = 3, nT E = 1.

The optimization was implemented using the intlinprog function in Matlab.
The lineup that produced the maximum predicted FPTS of the three was
selected as the optimal lineup. Three intlinprog options were used with
the function: AbsoluteGapTolerance of 0, CutMaxIterations of 25, and
IntegerTolerance of 1×10−4.

Note that DraftKings requires players in a lineup be selected from at least
two teams. This requirement was not enforced in this step so the generation of
infeasible lineups would be possible.

2.4 Statistical methods
To guard against the possibility of using a model with poor predictive ability due
to a specific mix of the training and validation data, 10,000 models were created
by placing data randomly into the training set or validation set for each instance in
Sec. 2.2. Data for the upcoming week was then placed into each model, creating
10,000 FPTS predictions for each draftable player. Using the FPTS from one
model at a time, 10,000 lineups were generated using the MILP procedure in
Sec. 2.3.
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As only one lineup will be entered into the contest, the most robust lineup
of the 10,000 was selected as the final choice. Here, the most robust lineup was
chosen to be the modal lineup: the one that was generated most often among the
simulations. Using the modal roster is analogous to using a majority/plurality
voting [28] scheme in classification problems. In convergence testing, by 100
lineups, the modal lineup converged and was unchanged when adding more
simulations.

Confidence intervals (CI) of the percentile of performance (Secs. 3.2 and 3.3)
were determined using bootstrapping analysis [29] with a resample size of 10,000.

Normality of distributions was tested using a one-sample Kolmogorov-
Smirnov test. Means of distributions were compared using a two-sided unpaired,
heteroscedastic t-test. The significance threshold was set a priori to α = 0.05.
Effect size between the means of distributions was calculated using Cohen’s
d [30]. Because of the normality of the distributions and large sample size, no
corrections were performed.

3 Results

3.1 Weekly generated lineups
For each week of games, data from the previous three weeks were used in the
trained NN model. Data from the active week (not the FPTS) were also included.
These data were processed by the methods described in Secs. 2.2 and 2.3. Players
declared on injured reserve, “out”, “questionable” or otherwise not starting were
manually removed from the possible selections. Player salaries and assigned
positions were taken from DraftKings

Lineups were generated in real-time for NFL weeks 6 through 16 before the
start of each week’s first game. In weeks 7 and 9, a player in the generated lineup
did not play in the game (as a game-time decision after the lineup was set) and thus
generated zero FPTS. Therefore, these weeks were not included in the analysis
in the following sections. The predicted and actual performances of generated
lineups are summarized in Table 3. An example lineup from week 6 is shown in
Fig. 3. All generated lineups are shown in Sec. A.
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Table 3: Predicted and Actual FPTS Performance of Weekly Generated Lineups.
The drafted players are seen in the associated histograms. Note, weeks 7 and
9 each had a game-time substitution where a drafted player did not participate.
These weeks were not included for consideration.

Week Predicted FPTS [95% CI] Actual FPTS Lineup Histogram
6 165.6 [145.8, 185.5] 129.52 Fig. 3
8 167.0 [145.9, 185.0] 134.70 Fig. 5

10 160.1 [137.6, 186.6] 120.80 Fig. 6
11 174.1 [153.1, 195.7] 125.10 Fig. 7
12 185.7 [157.8, 213.5] 136.96 Fig. 8
13 187.0 [169.1, 205.2] 95.88 Fig. 9
14 145.7 [127.8, 165.5] 88.80 Fig. 10
15 193.8 [161.8, 222.9] 100.12 Fig. 11
16 135.7 [118.5, 154.5] 94.54 Fig. 12

3.2 Comparison to randomly-created lineups
Each week, the generated lineups from Sec. 3.1 were first tested against
35,000 (approximately the same number that will be used in Sec. 3.3) feasible,
randomly-created lineups. These lineups used a total salary of at least $45,000 –
90% of the cap – to serve as a reasonable proxy for competing with low-skill
users. This is similar to the method used by Newell [2] that compares optimal
lineups generated by an integer program to randomly generated lineups using at
least 90% of the salary cap. The random lineups were created after the conclusion
of the final game each week and did not use players that earned zero FPTS to
avoid drafting any player that did not play or earn FPTS that week.

The performance of each week’s lineup was evaluated by calculating its FPTS
percentile within the distribution of random lineups. Boxplots of the distribution
of random lineups compared to the generated lineup are shown per week in Fig. 4
and the calculated percentiles are shown in Table 4. The randomly-created lineup
FPTS distributions are the left-sided boxes in each plot. The FPTS distributions
of every week passed the Kolmogorov-Smirnov normality test with p ≪ 0.001.
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Figure 3: Probability histograms of expected player FPTS for generated lineup
for week 6. The FPTS Distributions are based on 10,000 models. Total FPTS
predicted to be 165.6 [145.8, 185.5]. The actual total FPTS was 129.52. Red
lines indicate a player’s actual FPTS.

3.3 Comparison to real-world DFS contests
To next test the performance of the method, the generated lineups were submitted
and compared to those from real DFS users. The lineups and FPTS totals for all
users were collected from GPP contests on DraftKings using the NFL “Classic”
Thursday through Monday format. All contests were either free or $0.25 to enter.
This contest uses every game for a week of regular season play. The results
from several contests each week were collected and aggregated. Week six of the
regular season was used as the starting point for entry and data collection as the
methodology requires four weeks of past data for the training the NN model. Also,
by this week, the starters for the teams are likely determined. User scores of zero
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Figure 4: Boxplots of weekly FPTS distributions of randomly-created lineups
(left box in each) and real-word (right box in each). The mean of the real-world
distributions was found to be larger than the mean of the randomly-created with all
p ≪ 0.001. The green line indicates the number of FPTS scored by the generated
lineup in each week.

were removed from the data set when calculating the percentiles and displaying
the histograms. The summary of weekly performances is shown in Table 5.
Boxplots of the distributions of the FPTS of the real-world users and the FPTS
of the generated lineup are shown in Fig. 4. The real-world FPTS distributions are
the right-sided boxes in each plot. The FPTS distributions of every week, except
week 6, passed the Kolmogorov-Smirnov normality test with p < 0.05.

Every week, the mean FPTS of the real-world distribution was larger than the
mean of the random distribution with p ≪ 0.001. The effect sizes ranged from
d = 0.49 to d = 1.08, indicating medium to large effect sizes every week that was
tested.
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Table 4: Weekly Generated Lineup Performance Against Randomly-Created
Lineups. Percentile of the generated lineup within the random lineups and 95%
CI is shown.

Week FPTS Percentile [95% CI]
6 129.52 62.7 [62.2, 63.2]
8 134.70 72.6 [72.1, 73.1]

10 120.80 51.4 [50.9, 51.9]
11 125.10 57.8 [57.3, 58.3]
12 136.96 73.4 [73.0, 73.9]
13 95.88 27.3 [26.8, 27.7]
14 88.80 13.6 [13.3, 14.0]
15 100.12 52.9 [52.3, 53.4]
16 94.54 19.3 [18.9, 19.7]

Table 5: Weekly Lineup Performance Against Real-World Contests. Percentile of
generated lineup in the user lineups and 95% CI is shown. Note, week 10 had a
relatively low sample size.

Week FPTS FPTS of Users [95% CI] Percentile [95% CI] Users
6 129.52 141.0 [93.21, 190.9] 32.2 [31.5, 32.9] 16,500
8 134.70 145.2 [104.3, 189.3] 31.6 [31.1, 32.0] 37,300

10 120.80 130.3 [87.97, 189.0] 34.2 [32.3, 36.2] 2300
11 125.10 136.8 [84.68, 195.0] 33.1 [32.6, 33.7] 29,000
12 136.96 136.7 [92.34, 185.0] 50.5 [49.8, 51.2] 22,000
13 95.88 128.8 [81.78, 180.7] 9.34 [8.99, 9.70] 25,000
14 88.80 125.4 [80.15, 183.0] 6.10 [5.82, 6.40] 26,200
15 100.12 115.3 [72.02, 164.3] 25.2 [24.7, 25.6] 33,000
16 94.54 139.6 [88.22, 195.9] 4.52 [4.24, 4.81] 20,400

4 Discussion
The generated lineups outperformed randomly-created lineups, on average, using
the simulation process outlined in Sec. 3.2. The generated lineup received
FPTS typically above the median with the exception of weeks 13, 14, and 16.
However, the generated lineups did not fare as well against real-world users. As
shown in Sec. 3.3, the generated lineups had a median performance at the 31st-
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percentile. The methodology consistently outperformed about one-third of human
participants.

The actual FPTS earned by the generated lineups each week fell below
the low-end 2.5th-percentile prediction from the models. At the player level,
individual FPTS predictions were generally poor, usually falling far outside the
95% CI from the 10,000 models. This can be seen visually in Appendix A. As
mentioned in Sec. 2.2, the predictive ability of the NN is sensitive to the training
algorithm, the number of neurons, the training and validation set size and ratio,
and the selected features. There are many parameters within the NN that may be
adjusted and features may be varied to increase model performance. The accuracy
of the model is greatly dependent on the feature variables, so determining the
variables that have the most influence on the target is crucial. Some other features
that were tested include a player’s team and opponents. These were used as
categorical features but dramatically increased the computational time by adding
160 features. The MILP was incentivized to choose the “undervalued” players
according to the NN prediction. However, the unusually high FPTS prediction
for some players may have been due to modeling error rather than true insight
discovered from the NN.

The performance of the generated lineups took a noticeable decline starting
in week 13 against both the random lineups and real-world contests. There are
multiple possible contributions for this time-based decline in performance. First,
Cumulative injury may also contribute to the reduced prediction power as the
season evolves. Though players continue to start, injury prevalence increases in
the second half of the season [31]. Consequently, players may not be playing
as well as earlier weeks of the season. Second, around this week in the season,
teams begin to clinch playoff spots or be eliminated from post-season contention.
High-performing players may be held back in these instances to mitigate their
risk of injury before the post-season. Betting against NFL teams that have
clinched playoffs, has been shown in the literature to be a successful strategy [32].
Conversely, as teams are eliminated from the post-season, there is an incentive
to continue to lose to obtain a higher draft pick in the upcoming draft [33].
The concept is known as “tanking” and is expected to strengthen a team in the
upcoming season. Neither of these possible degradation factors is considered by
the NN. As the current model looks back three weeks, it is not well suited to adjust
for these abrupt changes in player and team performance. One remedy for these
potential issues would be to enter contests only in the middle weeks of the season.

User skill has been shown to be necessary for DFS success [14]. After
submitting random lineups to 35 MLB double-up contests and losing on all
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instances [2]. In their study, random lineups represent unskilled users and utilize
only feasible lineups without a minimum salary. On average, these lineups ranked
in the bottom 6.12% of contest lineups. This supports that simply selecting players
blindly for a lineup is not a sufficient strategy for success in DFS contests. Based
on the t-test results in Sec. 3.3, the mean FPTS from user lineups was significantly
higher than the mean of the randomly-created lineups. All effect sizes were at least
“medium” between the two groups. These results are consistent with previous
work, demonstrating that skillfully selecting DFS lineups outperforms random
selections. Assuming a normal distribution of MLB contest results, a comparison
to NFL DFS contests, on average optimized lineups ranked in the bottom 25.2%:
nearly a 312% increase in percentile from random lineups. By simply having a
strategy for selecting a lineup, the percentile of the lineup may increase drastically.

The same study also simulated weekly FanDuel NFL DFS contests by
generating feasible random lineups with a 90% minimum salary to represent real
contest users as a comparison against optimized lineups representing a skilled
user. In this case, the skilled participant is maximizing expected FPTS by using an
integer program. The average FPTS of past games were used with the simulation.
Their results found – with 99% confidence – that the random team’s mean FPTS
will be 20 to 55 points lower than that of an integer program. The results presented
in Sec. 3.2 offer additional support that lineups can be generated that outperform
random selections. For most weeks, the lineups were above the median. The
data collected from DraftKings in Sec. 3.3 show too that users perform better than
random rosters.

The methodology was validated against only one format of many possible
Daily Fantasy games. On DraftKings, it can be used directly for the smaller
pools (e.g., Sunday- or Monday-only contests) by using the same model but
limiting the players eligible for selection in the MILP (Sec. 2.3) step. Different
sites (e.g., FanDuel, FantasyDraft) can be used by simply changing the source
of the FPTS data. With modifications, other sports could be used with the
methodology.

The premise of this method’s MILP optimization was to maximize expected
FPTS. Alternatively, the optimization could be changed to maximize expected
winnings. As the GPP awards to a top performing percentile of lineups, one
does not need to be the best to win a payout. In two DraftKings NFL DFS
contest studies [2, 15], a stochastic integer program is expected to have a higher
payout in “tiered” contests with lineups having a lower mean and higher standard
deviation. Conversely, the integer program produced lineups with a higher mean
and lower standard deviation and is expected to have a higher payout in a “double-
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up” contest. Tiered and double-up refer to different contests where tiered contests
payout about 20% of users and double up contests payout 50%, but both followed
the classic-style constraints considered in this work. These findings coincide
with salary allocation strategies for different payout structures, suggesting a more
volatile hit-or-miss lineup has a higher probability of receiving a payout in GPP
structures [34]. Similarly, a more consistent lineup is expected to do better
in double-up structures. As shown in Sec. 3.3, the selected players generally
underperformed the prediction, but also show volatility which may be beneficial
for GPP contests.

Although GPP contests range in allowable entries per room from one to
unlimited, only one lineup was submitted to one contest every week. A study of a
DraftKings high-stakes contest showed that nearly all participants that submitted
fewer than 100 entries lost money [35]. Many of the top users submit multiple
lineups. However, such a strategy would not be satisfactory for contests with only
one permissible entry. This methodology currently produces one lineup, but it
could be used to identify multiple potential lineups which could be entered.

Real-world validation was performed using the data from the combination of
multiple free or $0.25 contests. Data from pay-to-play contests were not available
from DraftKings unless a lineup was entered. It is conceivable that the caliber
of the user and the selection strategy of a lineup is different in free and low-cost
contests versus higher-fee contests which may skew the FPTS distributions.

Due to computational and data constraints, model training was limited.
Running the training for longer and more epochs may improve the results. Using
more features could also improve its predictive power. However, including
categorical data, like teams, may add 32 more binary features for each instance.
The number of features versus the amount of data may cause an overfit system
and the training time increases dramatically. The training window data for the
NN was set to three previous weeks in this study. Using more or fewer weeks in
the window may improve the accuracy of the FPTS prediction. Future work will
permute and compare many different modeling options to improve the outcomes.

5 Conclusions & future work
The FPTS of players is difficult to predict, but statistical modeling of historical
data allows for forecasting of player FPTS. Predicting player FPTS is further
shadowed by the uncertainty involved with chance. Injuries and days players
simply underperform are difficult or nearly impossible to predict even with all
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available quantified player data. DFS is growing in popularity, and as more users
join the online contests some may be skeptical as to the gambling aspect of fantasy
sports. However, with statistical modeling, there is mathematical logic behind
selecting lineups and avoids human bias. Statistical models attempt to determine
undervalued players that most users may overlook. This method may be applied
to other SKP with dynamic resource values with a desire to allocate resources
optimally. The player estimations using the model have a high margin of error,
but it is believed the error may be reduced substantially with the right combination
of features and functions within the NN.

Unlike some previous FPTS prediction studies, this method does not assume
a normal distribution of FPTS nor the independence of players’ FPTS. The use of
the NN modeling allows for the discovery of “synergy” between players on the
same team.

The authors did not have experience with fantasy football prior to the study
and present an objective methodology and analysis. With this baseline study
complete, experienced fantasy users will be brought in to refine the process.
Future improvements in performance can be compared to this work.

First, post hoc factor analysis will be performed on the NN models to reveal
what features were most and least salient to the FPTS prediction. The low-
contributing factors may be pruned: leading to a speedup in the training time
without an appreciable loss in accuracy. Furthermore, reducing the feature set
will help avoid overfitting the data. There is a relatively small amount of data,
ranging from 150-300 players in the window. Replacing low-contributing features
with new higher-contributing features may increase the fidelity while minimizing
overfitting.

Weights and biases on features going to neurons can be given initial values, so
adjusting weights may put emphasis on certain variables to start training. Network
functions may be varied to select training and validation set data differently,
or adjusting the pre-processing of features and post-processing of outputs may
also reduce error. If the model does not produce reliable results in the future, a
different machine learning algorithm may be applied. The NN model generally
overestimates player FPTS, but it may be adjusted for further reduction in
estimation error.

This methodology could be extended to other NFL DFS styles, such as
“Showdown.” Here, users draft a six-player team of all flex players with one
being the captain with a 50% increase in salary but a 50% bonus in FPTS.

Other sports could benefit from the principles introduced by this method. For
example, MLB lineups could be generated and could have better performance due
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to an increased data set size with over ten times as many games in the regular
season per team compared to the NFL.
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Figure 5: Probability histograms of expected FPTS for generated lineup for
week 8. Distributions based on 10,000 models. Total FPTS predicted to be
167.0 [145.9, 185.0]. The actual FPTS was 134.7. Red lines indicate the player’s
actual FPTS.
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Figure 6: Probability histograms of expected FPTS for generated lineup for
week 10. Distributions based on 10,000 models. Total FPTS predicted to be
160.1 [137.6, 186.6]. The actual FPTS was 120.8. Red lines indicate the player’s
actual FPTS.
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Figure 7: Probability histograms of expected FPTS for generated lineup for
week 11. Distributions based on 10,000 models. Total FPTS predicted to be
174.1 [153.1, 195.7]. The actual FPTS was 125.1. Red lines indicate the player’s
actual FPTS.
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Figure 8: Probability histograms of expected FPTS for generated lineup for
week 12. Distributions based on 10,000 models. Total FPTS predicted to be
184.6 [158.0, 210.9]. The actual FPTS was 136.96. Red lines indicate the player’s
actual FPTS.
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Figure 9: Probability histograms of expected FPTS for generated lineup for
week 13. Distributions based on 10,000 models. Total FPTS predicted to be
187.0 [169.1, 205.2]. The actual FPTS was 95.88. Red lines indicate the player’s
actual FPTS.
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Figure 10: Probability histograms of expected FPTS for generated lineup for
week 14. Distributions based on 10,000 models. Total FPTS predicted to be
145.7 [127.8, 165.5]. The actual FPTS was 88.8. Red lines indicate the player’s
actual FPTS.
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Figure 11: Probability histograms of expected FPTS for generated lineup for
week 15. Distributions based on 10,000 models. Total FPTS predicted to be
193.8 [161.8, 222.9]. The actual FPTS was 100.12. Red lines indicate the player’s
actual FPTS.
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Figure 12: Probability histograms of expected FPTS for generated lineup for
week 16. Distributions based on 10,000 models. Total FPTS predicted to be
135.7 [118.5, 154.5]. The actual FPTS was 94.54. Red lines indicate the player’s
actual FPTS.
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