McGill scientists develop a biomaterial to repair the heart, muscles, and vocal cords

NewsGuard 100/100 Score

Combining knowledge of chemistry, physics, biology, and engineering, scientists from McGill University develop a biomaterial tough enough to repair the heart, muscles, and vocal cords, representing a major advance in regenerative medicine.

People recovering from heart damage often face a long and tricky journey. Healing is challenging because of the constant movement tissues must withstand as the heart beats. The same is true for vocal cords. Until now there was no injectable material strong enough for the job."

Guangyu Bao, PhD Candidate, Department of Mechanical Engineering, McGill University

The team, led by Professor Luc Mongeau and Assistant Professor Jianyu Li, developed a new injectable hydrogel for wound repair. The hydrogel is a type of biomaterial that provides room for cells to live and grow. Once injected into the body, the biomaterial forms a stable, porous structure allowing live cells to grow or pass through to repair the injured organs.

"The results are promising, and we hope that one day the new hydrogel will be used as an implant to restore the voice of people with damaged vocal cords, for example laryngeal cancer survivors," says Guangyu Bao.

Putting it to the test

The scientists tested the durability of their hydrogel in a machine they developed to simulate the extreme biomechanics of human vocal cords. Vibrating at 120 times a second for over 6 million cycles, the new biomaterial remained intact while other standard hydrogels fractured into pieces, unable to deal with the stress of the load.

"We were incredibly excited to see it worked perfectly in our test. Before our work, no injectable hydrogels possessed both high porosity and toughness at the same time. To solve this issue, we introduced a pore-forming polymer to our formula," says Guangyu Bao.

The innovation also opens new avenues for other applications like drug delivery, tissue engineering, and the creation of model tissues for drug screening, the scientists say. The team is even looking to use the hydrogel technology to create lungs to test COVID-19 drugs.

"Our work highlights the synergy of materials science, mechanical engineering and bioengineering in creating novel biomaterials with unprecedented performance. We are looking forward to translating them into the clinic", said Professor Jianyu Li, who holds the Canada Research Chair in Biomaterials and Musculoskeletal Health.

Source:
Journal reference:

Taheri, S., et al. (2021) Injectable, pore-forming, perfusable double-network hydrogels resilient to extreme biomechanical stimulations. Advanced Science. doi.org/10.1002/advs.202102627.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
DASH diet may lower the risk of cardiovascular disease in breast cancer survivors