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Abstract

As advances in artificial intelligence (AI) continue to transform and revolutionize the field of medicine, understanding the potential
uses of generative AI in health care becomes increasingly important. Generative AI, including models such as generative adversarial
networks and large language models, shows promise in transforming medical diagnostics, research, treatment planning, and
patient care. However, these data-intensive systems pose new threats to protected health information. This Viewpoint paper aims
to explore various categories of generative AI in health care, including medical diagnostics, drug discovery, virtual health assistants,
medical research, and clinical decision support, while identifying security and privacy threats within each phase of the life cycle
of such systems (ie, data collection, model development, and implementation phases). The objectives of this study were to analyze
the current state of generative AI in health care, identify opportunities and privacy and security challenges posed by integrating
these technologies into existing health care infrastructure, and propose strategies for mitigating security and privacy risks. This
study highlights the importance of addressing the security and privacy threats associated with generative AI in health care to
ensure the safe and effective use of these systems. The findings of this study can inform the development of future generative AI
systems in health care and help health care organizations better understand the potential benefits and risks associated with these
systems. By examining the use cases and benefits of generative AI across diverse domains within health care, this paper contributes
to theoretical discussions surrounding AI ethics, security vulnerabilities, and data privacy regulations. In addition, this study
provides practical insights for stakeholders looking to adopt generative AI solutions within their organizations.
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Introduction

Artificial intelligence (AI) is transforming many industries,
including health care. AI has the potential to revolutionize health
care by enabling the detection of signs, patterns, diseases,
anomalies, and risks. From administrative automation to clinical
decision support, AI holds immense potential to improve patient
outcomes, lower costs, and accelerate medical discoveries [1].
An especially promising subset of AI is generative models,

which are algorithms that can synthesize new data, imagery,
text, and other content with humanlike creativity and nuance
based on patterns learned from existing data [2]. Generative AI
could power clinical practices in health care, from generating
synthetic patient data to augmenting rare disease research to
creating AI-assisted drug discovery systems [3]. Generative AI
has the potential to detect signs, patterns, diseases, anomalies,
and risks and assist in screening patients for various chronic
diseases, making more accurate and data-driven diagnoses and
improving clinical decision-making [4]. Generative AI also has
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the potential to transform patient care with generative AI virtual
health assistants [5].

However, generative AI systems pose acute privacy and security
risks along with their transformative potential because of their
vast data requirements and opacity [6]. Generative AI models
can be trained on sensitive, multimodal patient data, which
could be exploited by malicious actors. Therefore, the collection
and processing of sensitive patient data, along with tasks such
as model training, model building, and implementing generative
AI systems, present potential security and privacy risks. Given
the sensitive nature of medical data, any compromise can have
dire consequences, not just in data breaches but also in patients’
trust and the perceived reliability of medical institutions. As
these AI systems move from laboratory to clinical deployment,
a measured approach is required to map and mitigate their
vulnerabilities. Another challenge of using generative AI models
is that they can be biased, which could lead to inaccurate
diagnoses and treatments [7].

Despite the growing interest in generative AI in health care,
there is a gap in the literature regarding a comprehensive
examination of the unique security and privacy threats associated
with generative AI systems. Our study attempts to provide
insights into the different categories of generative AI in health
care, including medical diagnostics, drug discovery, virtual
health assistants, medical research, and clinical decision support.
This study also aims to address the gap by identifying security
and privacy threats and mapping them to the life cycle of various
generative AI systems in health care, from data collection
through model building to clinical implementation. By
identifying and analyzing these threats, we can gain insights
into the vulnerabilities and risks associated with the use of
generative AI in health care. We also seek to contribute to theory
and practice by highlighting the importance of addressing these
threats and proposing mitigation strategies.

The findings of this study can inform the development of future
generative AI systems in health care and help health care
organizations better understand the potential benefits and risks
of using these systems. The significance of this study lies in its
potential to inform policy makers, health care organizations,

and AI developers about the security and privacy challenges
associated with generative AI in health care. The findings of
this study can guide the development of robust data governance
frameworks, secure infrastructure, and ethical guidelines to
ensure the safe and responsible use of generative AI in health
care. With careful governance, the benefits of generative models
can be realized while safeguarding patient data and public trust.
Ultimately, this study contributes to the advancement of
knowledge in the field of AI in health care and supports the
development of secure and privacy-preserving generative AI
systems for improved patient care and outcomes.

Generative AI Applications in Health Care

Overview
Generative AI models use neural networks to identify patterns
and structures within existing data to generate new and original
content. Generative AI refers to techniques such as generative
adversarial networks (GANs) and large language models (LLMs)
that synthesize novel outputs such as images, text, and molecular
structures [8]. GANs use 2 neural networks, a generator and a
discriminator, that compete against each other to become better
at generating synthetic data [9]. LLMs such as GPT-4 (OpenAI)
are trained on massive text data and can generate synthetic
natural language text, code, and so on [10].

Generative AI has spurred a wide range of applications in health
care. This subset of AI has the potential to make a breakthrough
in medical diagnostic applications, given its capability to build
models using multimodal medical data [5]. Generative AI also
promises to accelerate drug discovery by inventing optimized
molecular candidates [11]. In research settings, these generative
AI techniques can hypothesize promising new directions by
creatively combining concepts [12]. Generative AI also has
applications in engaging patients through natural conversation
powered by LLMs [2]. When integrated into clinical workflows,
it may also provide physicians with patient-specific treatment
suggestions [13].

The classification of generative AI systems presented in Table
1 was developed based on a careful analysis of the various
factors that differentiate these technologies.
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Table 1. Categories of generative artificial intelligence (AI) applications in health care.
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Differentiating Factors
The goal was to provide a framework for better understanding
the diversity of generative AI across health care settings. We
leverage several key factors to differentiate the applications and
provide insights into this emerging field, described in the
following sections.

Setting
The clinical setting categorizes where in the health care
workflow the generative AI system is applied, such as
diagnostics, treatment planning, drug discovery, clinical decision
support, and patient education [14]. This provides insights into
the breadth of health care contexts leveraging these technologies.

Users
Generative AI tools are tailored to different types of users in
health care, from clinicians to researchers to patients [15].
Categorization by intended user groups reveals how generative
AI penetrates various stakeholder groups and which user groups
may adopt and interact with generative AI applications.

Input Data
The data sources powering generative AI systems vary
significantly, from electronic health records (EHRs) and medical
imaging to biomedical literature, laboratory tests, and
patient-provided data [16]. Categorization by data inputs
illustrates how different data fuel different categories of
applications.

Output Data
The outputs produced by the system, such as images, care
planning, prescription advice, treatment options, drug molecules,
text, risk scores, and education materials [17], demonstrate the
wide range of generative AI capabilities in health care.

Personalization Level
The level of personalization to individual patients reveals the
precision of the outputs, from generalized to fully patient
specific. This provides a perspective on the customizability of
the generative AI system.

Workflow Integration
Some generative AI systems are designed as stand-alone
applications, whereas others are integrated into clinical
workflows via EHRs, order sets, and so on. Categorization by
workflow integration sheds light on the level of adoption,
implementation practices, and integration of these tools.

Validation Needs
The extent of validation required, from noncritical outputs to
those needing rigorous US Food and Drug Administration
approval [18], highlights differences in oversight and impact
levels.

Impact: profiling the benefits and use cases served by the
generative AI technology, such as improving diagnostics,
reducing medication errors, or accelerating drug discovery,
provides insights into the varied impacts.

Risks
Discussing risks and limitations provides a balanced view of
concerns such as algorithmic bias, privacy concerns, security
issues, system vulnerability, and clinical integration challenges.

Human-AI Collaboration
Generative AI systems differ in the level of human involvement
required, from fully automated to human-in-the-loop (human
engagement in overseeing and interacting with the AI’s
operational process) [19]. Categorization by human-AI
partnership provides insights into the changing dynamics
between humans and AI across health care.
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Aims
This study aims to reveal crucial differences, use cases, adoption
levels, various risks, and implementation practices by developing
categories based on these key attributes of generative AI
systems. The proposed framework clarifies the heterogeneous
landscape of generative AI in health care and enables a trend
analysis across categories. These factors provide a perspective
on how generative AI manifests distinctly for various users,
data types, workflows, risk factors, and human-AI partnerships
within health care. By systematically analyzing the diverse
range of generative AI systems across health care settings using
the key factors discussed previously, we can classify the
heterogeneous landscape of generative AI in health care into 5
overarching categories: medical diagnostics, drug discovery,
virtual health assistants, medical research, and clinical decision
support.

Medical Diagnostics
Generative AI techniques can analyze data from wearables,
EHRs, and medical images (eg, x-rays, magnetic resonance
imaging, and computed tomography scans) to detect signs,
patterns, diseases, anomalies, and risks and generate descriptive
findings to improve diagnoses. Systems such as AI-Rad
Companion leverage natural language generation models to
compose radiology reports automatically, highlighting potential
abnormalities and issues for clinician review [20]. This assists
radiologists by providing initial draft findings more rapidly.
However, clinicians must thoroughly validate any generative
AI outputs before clinical use. Ongoing challenges include
reducing false positives and negatives [21].

Drug Discovery
Generative AI shows promise for expediting and enhancing
drug discovery through inventing optimized molecular structures
de novo. Techniques such as GANs combined with
reinforcement learning allow the intelligent generation of
molecular graph representations [22]. Companies such as
Insilico Medicine are using these generative chemistry
techniques to propose novel target-specific drug candidates with
desired properties. This accelerates preclinical pharmaceutical
research. However, validating toxicity and efficacy remains
critical before human trials.

Virtual Health Assistants
Generative models such as LLMs can power conversational
agents that understand and respond to patient questions and
concerns [23]. Companies such as Sensely and Woebot Health
leverage these techniques to create virtual assistants that explain
symptoms, provide health information, and offer screening
triage advice through natural dialogue [24]. This increases access
and engagement for patients. However, challenges remain
around privacy, information accuracy, and integration into
provider workflows [25].

Medical Research
In research settings, generative AI can formulate novel
hypotheses by making unexpected combinations of concepts,
mimicking human creativity and intuition. Claude from
Anthropic can read research papers and propose unexplored

directions worth investigating [26]. This unique generative
capacity could accelerate scientific advancement. However,
corroboration by human researchers is crucial to prevent the
blind acceptance of AI-generated findings [27].

Clinical Decision Support
Integrating generative AI into clinical workflows could provide
patient-specific suggestions to assist physicians in
decision-making. Glass AI leverages LLMs such as GPT-3 to
generate tailored treatment options based on patient data for
physicians to review [15]. This could improve outcomes and
reduce errors. However, bias mitigation and high validation
thresholds are critical before real-world adoption [28].

By holistically examining all the key factors, we can see how
each one contributes to delineating these 5 high-level categories
that provide a comprehensive snapshot of the generative AI
landscape in health care. Analyzing these 5 categories through
the lens of the proposed factors enables our study to reveal
crucial differences, use cases, benefits, limitations, and
implementation practices of generative AI technologies across
major health care domains.

Literature Review

The adoption of AI (powered by various models) is accelerating
across health care for applications ranging from medical imaging
to virtual assistants. However, the data-intensive nature and
complexity of these systems introduce acute privacy and security
vulnerabilities that must be addressed to ensure safe and ethical
deployment in clinical settings. This literature review covers 2
topics. First, we highlight the dual nature of technological
advancements in generative AI within health care, its benefits,
and its risks, particularly in terms of privacy and security that
it entails. Second, we explain AI regulation and compare the
key aspects of the European Union (EU) AI Act and the US AI
Bill of Rights.

Generative AI: Balancing Benefits and
Risks

Overview
The use of generative AI systems in medicine holds promise
for improvements in areas such as patient education and
diagnosis support. However, recent studies highlight that privacy
and security concerns may slow user adoption. A survey
explores the application of GANs toward ensuring privacy and
security [29]. It highlights how GANs can be used to address
increasing privacy concerns and strengthen privacy regulations
in various applications, including medical image analysis. The
unique feature of GANs in this context is their adversarial
training characteristic, which allows them to investigate privacy
and security issues without predetermined assumptions about
opponents’capabilities. This is crucial because these capabilities
are often complex to determine with traditional attack and
defense mechanisms. In the privacy and security models using
GANs, the generator can be modeled in two ways: (1) as an
attacker aiming to fool a defender (the discriminator) to simulate
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an attack scenario and (2) as a defender resisting a powerful
attacker (the discriminator) to simulate a defense scenario.

Examples of defense models include generative adversarial
privacy [30], privacy-preserving adversarial networks [31],
compressive adversarial privacy [32], and reconstructive
adversarial network [33]. These GAN-based mechanisms offer
innovative ways to enhance privacy and security in various
machine learning and data processing scenarios. The examples
are described in the subsequent sections.

Protection of Preimage Privacy
The compressive privacy GAN is designed to preprocess private
data before the training stage in machine learning as a service
scenarios [34]. It includes 3 modules: a generator module (G)
as a privatization mechanism for generating privacy-preserving
data, a service module (S) providing prediction services, and
an attacker module (A) that mimics an attacker aiming to
reconstruct the data. The objective is to ensure optimal
performance of the prediction service, even in the face of strong
attackers, by intentionally increasing the reconstruction error.
This method defends against preimage privacy attacks in
machine learning as a service by ensuring that the input data of
a service module contains no sensitive information.

Privacy in Distributed Learning Systems
In decentralized learning systems, such as distributed selective
stochastic gradient descent [35] and federated learning (FL)
[36], data are trained locally by different participants without
data sharing. This setup can protect data privacy to some extent,
but it is not perfect. The GAN-based models in these systems
can mimic data distribution and potentially threaten data privacy.
The potential risks associated with the application of GAN-based
models in decentralized learning systems are multifaceted,
highlighting the need for robust privacy protection measures.
These risks are explained as the following: an attacker might
use GANs to recover sensitive information within the distributed
training system, and a malicious server can reveal user-level
privacy in distributed learning systems by training a multitask
GAN with auxiliary identification.

Protection mechanisms include embedding a “buried point
layer” in local models to detect abnormal changes and block
attackers and integrating GAN with FL to produce realistic data
without privacy leakage.

Differential Privacy in GANs
To address the problem of privacy leakage in the models, two
solutions have been proposed: (1) adding a regularization term
in a loss function to avoid overfitting and improve robustness;
for example, this method can be applied to defend against
membership inference attacks, [37] and (2) adding acceptable
noise into the model parameters to hinder privacy inference
attacks. Such methods have been used for privacy protection,
particularly the combination of differential privacy and neural
networks [38].

In medical research, the widespread use of medical data,
particularly in image analysis, raises significant concerns about
the potential exposure of individual identities. An innovative
adversarial training method focused on identity-obfuscated

segmentation has been proposed to address this challenge [39].
This method is underpinned by a deep convolutional GAN-based
framework comprising three key components: (1) a deep encoder
network, functioning as the generator, efficiently obscuring
identity markers in medical images by incorporating additional
noise; (2) a binary classifier serves as the discriminator, ensuring
that the transformed images retain a resemblance to their original
counterparts; and (3) a convolutional neural network–based
network dedicated to medical image analysis, acting as an
alternate discriminator responsible for analyzing the
segmentation details of the images. This framework integrates
an encoder, a binary classifier, and a segmentation analysis
network to form a robust approach to safeguard medical data
privacy while preserving the integrity and efficacy of medical
image segmentation.

The use of EHR medical records has significantly advanced
medical research while simultaneously amplifying concerns
regarding the privacy of this sensitive information. In response,
Choi et al [40] devised the medical GAN (medGAN), an
innovative adaptation of the standard GAN framework, aimed
at producing synthetic patient records that respect privacy. The
medGAN excels at generating high-dimensional discrete
variables. Its architecture uses an autoencoder as the generator,
which creates synthetic medical data augmented with noise. A
binary classifier functions as the discriminator, ensuring the
resemblance of these data to real records. The outcome is
synthetic medical data suitable for various uses, such as
distribution analysis, predictive modeling, and medical expert
evaluations, minimizing the privacy risks associated with both
identity and attributes. Furthering these advancements, Yale et
al [41] conducted an in-depth evaluation of medGAN’s ability
to protect privacy in medical records. In a parallel development,
Torfi and Fox [42] introduced Correlation-Capturing
Convolutional Generative Adversarial Networks (CorGAN),
which focuses on the correlations within medical records. Unlike
medGAN, CorGAN uses a dual autoencoder in its generator,
enabling the creation of sequential EHRs rather than discrete
entries. This approach enhances predictive accuracy, providing
more effective assistance to medical professionals [43].

Similarly, Nova [14] discusses the transformative impact of
generative AI on EHRs and medical language processing,
underlining the accompanying privacy concerns. It examines
the balance between the utility of GANs in generating health
care data and the preservation of privacy. Rane [44] explores
the wider privacy and security implications of using generative
AI models, such as ChatGPT, in health care within the context
of Industry 4.0 and Industry 5.0 transformation. The impact of
generative content on individual privacy is further explored by
Bale et al [45], emphasizing the ethical considerations in health
care.

Ghosheh et al [46] suggest that the use of GANs to create
synthetic EHRs creates many privacy challenges (eg,
reidentification and membership attacks). Hernandez et al [47]
discuss privacy concerns related to synthetic tabular data
generation in health care. Various methods and evaluation
metrics are used to assess the privacy dimension of the synthetic
tabular data generation approaches. These methods include
identity disclosure, attribute disclosure, distance to the closest
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record, membership attack, maximum real-to-synthetic
similarity, differential privacy cost, and GANs. For instance,
differential privacy is an approach that adds noise to the data
to prevent the identification of individuals. GANs can create
new and nonreal data points. Other advanced statistical and
machine learning techniques attempt to balance data utility and
privacy. Each method has its strengths and limitations, and the
choice depends on the specific requirements of the health care
application and the sensitivity of the data involved.

The applications and challenges of generative AI in health care,
including privacy issues and AI-human collaboration, are
explored by Fui-Hoon et al [48]. They discuss several privacy
issues related to generative AI, such as the potential disclosure
of sensitive or private information by generative AI systems,
the widening of the digital divide, and the collection of personal
and organizational data by these systems, which raises concerns
about security and confidentiality. In addition, they highlight
regulatory and policy challenges, such as issues with copyright
for AI-generated content, the lack of human control over AI
behavior, data fragmentation, and information asymmetries
between technology giants and regulatory authorities.

A study discusses the potential of FL as a privacy-preserving
approach in health care AI applications [49]. FL is a distributed
AI paradigm that offers privacy preservation in smart health
care systems by allowing models to be trained without accessing
the local data of participants. It provides privacy to end users
by only sharing gradients during training. The target of FL in
health care AI applications is to preserve the privacy of sensitive
patient information communicated between hospitals and end
users, particularly through Internet of Medical Things (IoMT)
devices. The approach incorporates advanced techniques such
as reinforcement learning, digital twin, and GANs to detect and
prevent privacy threats in IoMT networks. The potential
beneficiaries of FL in health care include patients, health care
providers, and organizations involved in collaborative health
care research and analysis. However, implementing FL in IoMT
networks presents challenges, such as the need for robust FL
for diffused health data sets, the integration of FL with
next-generation IoMT networks, and the use of blockchain for
decentralized and secure data storage. Furthermore, incentive
mechanisms are being explored to encourage the participation
of IoMT devices in FL, and digital twin technology is being
leveraged to create secure web-based environments for remote
patient monitoring and health care research. Overall, FL in
health care AI applications aims to address privacy and security
concerns while enabling collaborative and efficient health care
systems.

Another study emphasizes the need for secure and robust
machine learning techniques in health care, particularly focusing
on privacy and security [50]. Finally, a study addresses the
vulnerabilities of generative models to adversarial attacks (eg,
evasion attacks and membership inference attacks), highlighting
a significant area of concern in health care data security [51].
These studies collectively underscore the need for a balanced
approach to leveraging the benefits of AI-driven health care
innovations while ensuring robust privacy and security
measures.

AI, Legal Challenges, and Regulation

AI, especially generative AI, has presented many legal
challenges, raising many profound questions on how AI can be
legally, securely, and safely used by businesses and individuals
[52]. The EU AI Act, passed in 2023, is the first comprehensive
legal framework to specifically regulate AI systems [53]. It
categorizes systems by risk level and introduces mandatory
requirements for high-risk AI related to data and documentation,
transparency, human oversight, accuracy, cybersecurity, and so
on. As stated in the act, national authorities will oversee
compliance.

The US AI Bill of Rights, unveiled in 2023, takes a different
approach as a nonbinding set of principles to guide AI
development and use focused on concepts such as algorithmic
discrimination awareness, data privacy, notice and explanation
of AI, and human alternatives and oversight [54]. Rather than
authoritative regulation, it promotes voluntary adoption by
organizations.

Although the EU law institutes enforceable accountability
around risky AI, the US bill espouses aspirational AI ethics
principles. Both identify important issues such as potential bias,
privacy risks, and the need for human control but tackle them
differently—the EU through compliance requirements and the
United States through voluntary principles. Each seeks more
responsible AI but via divergent methods that fit their
governance models. Despite differences in methods, there is a
consensus on fundamental issues such as ensuring transparency,
maintaining accuracy, minimizing adverse effects, and providing
mechanisms for redressal.

Specifically, for generative AI such as ChatGPT, the EU AI
Act mandates transparency requirements, such as disclosing
AI-generated content, designing models to prevent illegal
content generation, and publishing training data summaries.
Although the principles mentioned in the US AI Bill of Rights
do not specifically address generative AI, they provide a
framework for the ethical and responsible use of all AI
technologies, including generative AI. The principles emphasize
safety, nondiscrimination, privacy, transparency, and human
oversight, all of which are relevant to developing and deploying
generative AI systems.

Ultimately, the EU legislates binding rules that companies must
follow, whereas the United States issues guidance that
organizations may freely adopt. Despite this schism, both
highlight growing policy makers’ concern over AI’s societal
impacts and the emergence of either compulsory or optional
frameworks aimed at accountability. As leading AI powers craft
different but related policy solutions, ongoing collaboration
around shared values while allowing varied implementations
will be important for setting global AI standards.
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Security and Privacy Threats in the Life
Cycle of a Generative AI in Health Care
System

Overview
Although generative AI in health care holds great promise,
substantial validation is required before real-world deployment.
Ethical risks around reliability, accountability, algorithmic bias,
and data privacy as well as security risks related to
confidentiality, integrity, and availability must be addressed
through a human-centric approach [55]. Liu et al [56] surveyed
the security and privacy attacks related to machine learning and
developed a taxonomy. The taxonomy classifies those attacks
into three categories: (1) attacks targeting classifiers; (2) attacks
violating integrity, availability, and privacy (ie, part of
confidentiality); and (3) attacks with or without specificity.
They also summarize the defense techniques in the training
phase and the testing and inferring phase of the life cycle of
machine learning, for example, data sanitization techniques
against data poisoning attacks in the training phase and
privacy-preserving techniques against privacy attacks in the
testing or inferring phase. Similarly, Hu et al [57] present an
overall framework of attacks and defense strategies based on
the following five phases of the AI life cycle: (1) data collection
phase—main security threats include databases, fake data, data
breaches, and sensor attacks; defense strategies include data
sanitization and data government; (2) data processing
phase—image scaling is the main threat; recommended defense
strategies include image reconstruction and data randomization;
(3) training phase—data poisoning is the main threat; defense
strategies focus on techniques that can identify and remove
poisoned data (eg, the certified defense technique proposed by
Tang et al [58]) and provide robust and reliable AI models; (4)
inference phase—this phase mainly faces adversarial example
attacks such as white-box, gray-box, and black-box attacks
depending on how much the attacker knows about the target
model; a variety of defense strategies can be implemented to
tackle such attacks, such as adopting strategies in phases 1 to
3 to modify data (eg, data reconstruction and randomization)
or modify or enhance models with newer model construction
methods resistant to adversarial example attacks (eg, using deep
neural networks and GAN-based networks [58,59]); (5)
integration phase—AI models face AI biases, confidentiality

attacks (eg, model inversion, model extraction, and various
privacy attacks), and code vulnerability exploitation; defense
strategies in this phase should be comprehensive via integrating
various solutions such as fuzz testing and blockchain-based
privacy protection.

Generative AI is built upon machine learning and AI techniques
and hence faces similar security and privacy threats, as
summarized in the studies by Liu et al [56] and Hu et al [57].
Nevertheless, because generative AI, such as LLMs, often
requires large volumes of data (eg, large volumes of patient
data) to train, it faces many existing and new security and
privacy threats. If deployed carelessly, generative models
increase the avenues for protected health information (PHI) to
be leaked, stolen, or exposed in a breach. For example,
deidentifying data for LLMs is challenging [60]. Even
anonymized patterns in data could potentially reidentify
individuals if models are improperly handled after training. One
example is medical image analysis, as deidentified medical
images could be reidentified in medical image analysis because
of the massive amount of image data used in training [39]. LLMs
in health care also face data quality and bias issues, similar to
any machine learning model, leading to erroneous medical
conclusions or recommendations [61].

Furthermore, hackers could also exploit vulnerabilities in
systems hosting generative models to access the sensitive health
data used for training. Skilled hackers may be able to feed
prompts to models to obtain outputs of specific patient details
that allow reidentification even from anonymized data. For
example, improperly secured LLMs could enable bad actors to
generate fake patient data or insurance claims [62]. In general,
generative AI in health care encounters many of the same
security and privacy threats as general AI and machine learning
systems, along with new threats stemming from its unique
context. On the basis of the life cycle in the studies by Liu et al
[56] and Hu et al [57], our study presents a 3-phase life cycle
for generative AI. It also identifies security and privacy threats
and maps them to the life cycle of various generative AI systems
in health care (Figure 1). It should be noted that although this
study primarily discusses various security and privacy threats
associated with generative AI in health care (such as AI
hallucination in health care), many of these threats are not
unique to generative AI systems and are also prevalent in
broader AI systems and machine learning models in health care
and other fields.

Figure 1. Artificial intelligence (AI) security and privacy threats in 3 phases of the AI life cycle.

Data Collection and Processing Phase
Similar to AI systems in other fields, almost all types of
generative AI in health care face integrity threats. The main
integrity threats in this phase are traditionally owing to errors

and biases. Unintentionally, the increased data volume and
complexity of generative AI threatens data integrity because
errors and biases are prone to occur [63]. Errors and biases also
depend on the data sources for different types of generative AI
in health care. For example, assembling genomic databases and
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chemical compound or protein structure databases for drug
discovery is extremely challenging and could be error ridden
because many genomic and protein databases lack necessary
annotations, are inconsistent in formats, and may be poor in
data quality [64].

Intentionally, data poisoning can occur when data are collected
from various software packages by tampering with data. For
example, malicious insiders can tamper with data intentionally
when gathering data from various software sources. For
example, malicious actors can internationally submit mislabeled
genomic sequences and chemical compound protein structures
to tamper genomic databases and chemical compound or protein
structure databases, leading to fault training models and AI
hallucination.

In addition to data poisoning from software, in health care, data
may be gathered from sensors embedded in medical devices
and equipment. Sensor data can be spoofed [65,66], tampered
with, and thus poisoned. Furthermore, medical data contains a
large number of images. Adversaries can exploit the difference
in cognitive processes between AI and humans and tamper with
images during the data collection and processing phase.
Image-scaling attacks, in which an adversary manipulates
images so that changes are imperceptible to the human eye but
recognizable by AI after downscaling, represent one such form
of attack [67,68]. Other attacks on data sources of medical
images include, but are not limited to, copy-move tampering
(ie, copying an area and moving it to another area), classical
inpainting tampering (ie, patching a missing area with tampered
image slices), deep inpainting tampering (ie, similar to classical
inpainting tampering but using highly realistic image slides
generated by GANs), sharpening, blurring, and resampling [69].
In scenarios where AI in imaging diagnostics is targeted by
such attacks, the image data can be poisoned with malicious
information. Furthermore, generative AI, such as GANs, has
empowered hackers to generate or change the attributes or
content of medical images with high visual realism, making the
detection of tampered images extremely difficult [69].

Moreover, many generative AI applications in health care rely
on LLMs and are trained on large amounts of internet data
without being properly screened and filtered [70]. Adversaries
can use AI technologies to automatically generate large
quantities of fake data to poison data to be fed into LLMs,
resulting in deteriorated performance of the models (eg, accuracy
and fairness) and eventually AI hallucination, misinformation
or disinformation, and deepfakes. Although some of these threats
are not unique to generative AI in health care, they can be
particularly risky if false information is used for medical
decision-making. Generative AI also carries unique integrity
risks. As mentioned before, its capability to create synthetic
data leads to a unique integrity risk—AI hallucination. In the
health care context, generative AI in health care could be used
to create fake medical records or alter existing ones. Fabricated
medical data can be fed again into LLMs, further threatening
the integrity of medical information. For instance, the malicious
use of deepfakes generated by deep generative models could
fabricate a patient’s medical history to falsely claim insurance
or lead to incorrect treatments. Another example is that a
generative AI model may create synthetic radiology reports to

diagnose nonexistent medical conditions, leading to
misdiagnosis or unnecessary treatment.

By contrast, research has used synthetic data in AI for medicine
and health care to address the scarcity of annotated medical data
in the real world [71]. For instance, deep generative models are
used to create synthetic images such as skin lesions, pathology
slides, colon mucosa, and chest x-rays, thereby greatly
improving the reproducibility of medical data [71]. With the
development of generative AI, researchers have increasingly
used GANs to synthesize realistic training data for data
imputation when the data lacks distribution. Noise-to-image
and image-to-image GANs have been used to synthesize realistic
training magnetic resonance imaging images to boost the
performance of convolutional neural networks for image
diagnostic AI [39,72]. CorGAN [42] synthesizes discrete and
continuous health care records for model training. From a
broader perspective, generative AI is projected to build and use
next-generation synthetic gene networks for various AI
applications in health care, including medical diagnostics, drug
discovery, and medical research [73]. The growth in the use of
synthetic data by generative AI also creates new concerns about
data integrity and AI hallucination. Nevertheless, given that
health care is a heavily regulated field in terms of patient privacy
and safety, researchers even claim that synthetic medical data
might be promising to overcome data sharing obstacles for
health care AI and free developers from sensitive patient
information [74]. These applications indicate that there is a fine
line between harmful AI hallucinations or deepfakes and
beneficial synthetic data use by generative AI in health care.
Nevertheless, even the benevolent use of synthetic medical data
faces privacy and security challenges as well as integrity
challenges. Deep-faked patient face images could violate patient
privacy and lead to the leakage or exploitation of PHI [75]. How
to navigate this fine line is both a policy and research blind spot.
Currently, there are just insufficient use cases, especially for
rare use cases, to establish clinical reference standards such as
clinical quality measures and evaluation metrics to assess risks
and benefits.

Similar to generative AI applications in other fields, almost all
types of generative AI in health care face confidentiality threats.
Deidentified data may become identifiable during the data
collection and processing phase, and confidential proprietary
medical information, such as drug development and treatment
plans, may be inferred during the data collection and processing
phase [76], leading to data and privacy breaches. Research has
found that genomic databases are prone to privacy violations.
For example, legit researchers obtain or recover the whole or
partial genomic sequence of a target individual (privacy
violation through reference), link the sequence to a target
individual (ie, reidentifying), and identify the group of interest
of a target individual (privacy violation through membership
reference) when processing data from multiple sources. In
addition, the growth of synthetic medical data in health AI
systems raises concerns about the vulnerabilities of such systems
and the challenges of the current regulations and policies.

Table 2 summarizes the data sources and security or privacy
threats for each type of generative AI in health care in the data
collection and processing phase.
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Table 2. Generative AIa in health care categories, data sources, and security or privacy threats in the data collection and processing phase.

Security and privacy threatsData sourceAI cate-
gories

Intentional (availability and in-
tegrity attacks)

Unintentional (integrity and privacy threats)

1-3: Software tampering, medi-
cal sensor spoofing, medical

1-4: Incorrect, missing, or incomplete patient data
or images occur owing to hardware or software er-

Medical
diagnos-
tics

1. Medical images (eg, x-rays, CTb scans, MRIc

scans, pet scans, and microscopy images)
equipment tampering or poison-
ing (eg, CT and MRI scanning

rors, measurement and label errors, and human er-
rors (eg, distorted images, partial images, and mis-
matched data or laboratory results or images)

1-4: Data integration errors occur when integrating
data from various sources (eg, by mislabeling data

2. Patient reports and EHRsd (eg, laboratory re-
sults, comorbidities, and symptoms) equipment tampering), medical

image tampering (eg, image
scaling, copy-move tampering,
sharpening, blurring, and resam-

3. Clinical measurements (vital signs, tumor mea-
surements, and fluid output)

4. Patient metadata (demographics and family
history) attributes and mismatching patient information with

their images and laboratory results)

1-4: Organic biases occur because of the nature of
the disease and the demographics of patients, and
selection biases rise because of human biases

5. Annotation errors and biases occur in all sources
of data because of expert mistakes and human bias-
es

1-4: Errors and bias in synthetic data or images

1-7: Privacy breaches (eg, reidentify patients)

pling), generative fake data and
images (eg, generative fake CT
and MRI images undetectable
by both human experts and
generative AI), and medial data
tampering or poisoning (eg,
noise injection and maliciously
synthesized data)

5: Annotation errors by inten-
tion

5. Expert annotations to train models

1-5: Genomic data tampering
or poisoning (eg, maliciously

1-2: Duplication issues (eg, sequence redundancies
or sequence duplications with minor variations),

Drug
discov-
ery

1. Genomic databases (DNA or RNA sequencing
data)

forge and inject structures or
sequences, analyses, and find-
ings)

1-5: Annotation errors by inten-
tion

6: Model tampering

structural errors, and assembly or carried-over er-
rors owing to poor data quality of sources

1-6: Data integration errors occur when integrating
data from various sources

4-5: Wrong findings and errors in trials

1-6: Missing and incomplete data, missing or incor-
rect annotations, and human errors

1-6: Errors and bias in synthetic data

6: Incorrect or inaccurate models

1-7: Privacy breaches (eg, reidentify patients)

2. Chemical compound or protein structure
databases

3. Bioactivity assay data (in vivo and in vitro)
4. Disease or treatment knowledge bases (peer-

reviewed findings)
5. Patient clinical trial data
6. Toxicity predictions from pharmacokinetic

models

1-7: Data or records tampering
or poisoning (eg, noise injec-

1-5: Incorrect, missing, or incomplete patient data

1-7: Data integration errors occur when integrating
data from various sources

1-7: Organic biases occur because of the nature of
the disease and the demographics of patients, and
selection biases rise because of human biases

2: Errors owing to unknown fraudulent claims

6: Incorrect or inaccurate models

5-7: Errors and bias in synthetic data and AI hallu-
cination

1-7: Privacy breaches (eg, reidentify patients)

Virtual
health
assis-
tants

1. EHRs
2. Insurance claims data

tion using maliciously synthe-
sized data, analyses, and find-
ings)

1-7: Annotation errors by inten-
tion

1-7: AI hallucination

3. Patient symptom reports
4. Mobile health data: data collected from mobile

apps
5. Speech and text inputs: data from patient inter-

actions, including spoken dialogue and written
communication

6. Digitized medical reference information (guides
and protocols)

7. Custom health care knowledge bases

1-7: All the attacks mentioned
in the above cells could be ap-
plicable

1-7: All the errors and biases mentioned in the
above cells could be applicable

Medical
research

1. Clinical trial and study data sets
2. Epidemiological data from public health depart-

ments
3. Biomedical publications and preprint archives
4. Physician’s notes and patient diagnosis histories
5. Genomics databases
6. NIHe open-source data repositories
7. Biobanks: collections of biological samples

J Med Internet Res 2024 | vol. 26 | e53008 | p. 9https://www.jmir.org/2024/1/e53008
(page number not for citation purposes)

Chen & EsmaeilzadehJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Security and privacy threatsData sourceAI cate-
gories

Intentional (availability and in-
tegrity attacks)

Unintentional (integrity and privacy threats)

1-7: All the attacks mentioned
in the above cells could be ap-
plicable

1-7: All the errors and biases mentioned in the
above cells could be applicable

1. Real-time patient data feeds (vitals, laboratory
results, etc)

2. EHRs
3. Population health data
4. Hospital medical reference or treatment protocol

guides
5. Custom evidence-based clinical rules or guide-

lines
6. Medical insurance claims data
7. g. Pharmaceutical reference database

Clinical
decision
support

aAI: artificial intelligence.
bCT: computed tomography.
cMRI: magnetic resonance imaging.
dEHR: electronic health record.
eNIH: National Institutes of Health.

Again, it should be noted that although all AI and machine
learning systems face many similar threats, as listed in Table
2, generative AI amplifies them because of its generating nature
and data source volume and complexity. For example, generative
medical research AI may update knowledge and literature
databases with “wrong inputs” based on wrong findings in these
databases or with synthesized but hallucinated findings.
Similarly, generative virtual health assistants may put dangerous
advice into knowledge databases based on erroneous data from
sources or again put synthesized but hallucinated advice into
such databases.

Model Training and Building Phase
Generative AI also encounters integrity issues, leading to
phenomena such as AI hallucinations during model training and
development phases. This is especially true for generative AI
in health care. Prior research found that generative AI created
nonfactual or unfaithful data and outputs [72,77]. The growing
use of highly synthetic data or images by generative AI, such
as CorGAN, exacerbates the situation as it becomes increasingly
challenging for human professionals to detect unfaithful data
and outputs [69]. This can be a serious integrity and authenticity
issue, as both patients and clinicians expect factual, scientific
answers or outputs with consistency from such models.
Technically speaking, similar to all other AI models, generative
AI models in health care, particularly those based on deep
learning, are often seen as “black boxes” [78]. The lack of
interpretability and explainability can be a significant challenge
in health care, where understanding the reasoning behind a
diagnosis or treatment recommendation is crucial for integrity
and accountability.

Adversarial training is a method to check for the integrity and
accountability of AI models. The method uses carefully crafted
adversarial examples to attack the training model to check for
the integrity and robustness of outputs [57,79]. It is an active
AI research area in the health care field. Adversarial training is
used to check for fake or realistic features in synthetic medical
images created by GANs to avoid fabrication and misleading

in the model training process. By contrast, malicious parties
also intensively explore this method and use adversarial
examples to attack training models to generate incorrect
outcomes [57]. Technically, all types of generative AI using
GANs and LLMs, particularly those in health care, can be
attacked with adversarial examples that compromise the integrity
of the training model. For example, adversaries can use
image-scaling attacks to feed human-invisible data into an AI
model to force it to make a mistake [67,68].

Another example is to feed an AI model with carefully crafted
relabeled data to create the wrong classification [80]. When
being trained with adversarial examples, a diagnostic AI could
make an incorrect diagnosis, a conversational virtual assistant
could offer harmful advice to patients, and a clinical decision
support AI could make the wrong recommendations, to list a
few. Moreover, feeding an AI model with adversarial training
examples and other poisonous data can also deteriorate the
performance of AI, eventually making the AI model useless
and thus unavailable. In general, adversarial attacks can pose
long-term risks, such as thwarting AI innovation in health care
because of concerns about misdiagnosis, mistreatment, and
patient safety.

Implementation Phase
In practice, generative AI systems in health care have been
found to experiencing integrity threats, such as generating
disinformation and misinformation, and making biased decisions
[81]. AI hallucination is a newly-coined term describing the
phenomenon wherein generative AI generates fake information
that appears authentic [82]. If generative AI in health care is
used for diagnostics, personalized medicine, or clinical
assistance, AI hallucination can be extremely dangerous and
may even harm patients’ lives [83]. As discussed before, because
GANs and LLMs need large annotated medical data for training,
the difficulty of acquiring such data (eg, unwillingness to share
because of legal compliance requirements and data paucity
resulting from rare medical conditions) leads to the proliferation
of synthetic medical data creation. The relationship between AI
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hallucination by GANs and LLMs and synthetic data use is an
unknown territory in research and practice, leading to unknown
vulnerabilities such as adversarial attacks.

Privacy attacks are a grave concern at this stage. The use of
GANs for creating synthetic EHRs and its associated privacy
challenges are analyzed by Ghosheh et al [46]. Such privacy
challenges are as follows: (1) risk of reidentification—although
the data are synthetic, there might be a risk of reidentifying
individuals if the synthetic data closely resemble real patient
data; (2) data leakage—ensuring that the synthetic data do not
leak sensitive information from the original data set; (3) model
inversion attacks—potential for attackers to use the GAN model
to infer sensitive information about the original data set. In this
attack, attackers aim to reconstruct the training data using their
ability to constantly query the model [84]; (4) membership
inference attacks—an attacker gains access to a set of real
patient records and tries to determine whether any of the real
patients are included in the training set of the GAN model [85];
and (5) attribute disclosure attacks—an attacker can infer
additional attributes about a patient by learning a subset of other
attributes about the same patient [86].

Generative medical diagnosis and drug discovery AI involving
genomic databases and chemical compound or protein structure

databases are extremely susceptible to privacy attacks.
Fernandes et al [87] pointed out that genomic data such as DNA
data are susceptible to inference attacks, reidentification attacks,
membership attacks, and recovery attacks. It is extremely
concerning when such attacks target high-profile individuals.
Moreover, generative AI enhances the ability to profile patients,
thereby increasing the risk of privacy violations and attacks,
although this capability is not unique to AI.

In addition to AI-specific security and privacy threats, AI
systems interfacing with other hardware and software may face
new security and privacy threats that have never existed before
[57]. Malicious use and exploitation may also threaten the
integrity of AI systems. Similar to other AI systems, health care
AI systems, especially generative AI systems, are susceptible
to code extraction and information extraction (eg, black-box,
gray-box, and white-box attacks), leading to security and privacy
breaches [57]. The excessive use of prompts may reveal
copyright-protective data, proprietary research findings (eg,
chemical compounds of a new drug), and training models or
algorithms.

Table 3 summarizes the previously discussed security and
privacy threats associated with each category of generative AI
systems throughout their life cycle in health care.

Table 3. Generative artificial intelligence (AI) in health care categories and security or privacy threats in model training or building and implementation
phases.

Implementation phaseModel training and building phaseCategory

Confidentiality threatsIntegrity threatsAvailability threatsIntegrity threats

Data extraction from careful-
ly crafted prompts and priva-
cy attacks

AI hallucination (eg, made-up diagno-
sis), misinformation or disinformation,
and adversarial use exploitation

Model performance dete-
riorating by feeding poi-
sonous data

Adversarial training and
classification manipulation
(eg, image classification
manipulation)

Medical diagnos-
tics

Data extraction from careful-
ly crafted prompts and priva-
cy attacks

AI hallucination (eg, made-up chemical
compound or protein structures), misin-
formation or disinformation, and adver-
sarial use exploitation

Model performance dete-
riorating by feeding poi-
sonous data

Adversarial training and
classification manipulation

Drug discovery

Data extraction from careful-
ly crafted prompts and priva-
cy attacks

AI hallucination (eg, made-up medical
advice), misinformation or disinforma-
tion, and adversarial use exploitation

Model performance dete-
riorating by feeding poi-
sonous data

Adversarial training and
classification manipulation

Virtual health assis-
tants

Data extraction from careful-
ly crafted prompts and priva-
cy attacks

AI hallucination (eg, made-up findings,
hypothesis, and citations), misinforma-
tion or disinformation, and adversarial
use exploitation

Model performance dete-
riorating by feeding poi-
sonous data

Adversarial training and
classification manipulation

Medical research

Data extraction from careful-
ly crafted prompts and priva-
cy attacks

AI hallucination (eg, made-up conclu-
sions, findings, and recommendations),
misinformation or disinformation, and
adversarial use exploitation

Model performance dete-
riorating by feeding poi-
sonous data

Adversarial training and
classification manipulation

Clinical decision
support

Again, it should be noted that some of these threats are unique
to generative AI systems, but many of the threats are prevalent
in broader AI systems in health care and other fields.

Recommendations

Overview
As security and privacy threats exist in the life cycle of various
generative AI systems in health care, from data collection
through model building to clinical implementation, a systematic

approach to safeguard them is critical. This section provides
some recommendations on safeguards. In doing so, we rely on
the National Institute of Standards and Technology Privacy
Framework and the National Institute of Standards and
Technology AI Risk Management Framework as well as the
regulatory guidance discussed in the Literature Review section.
It should be noted that although the security and privacy threats
discussed in this study are significant and some are unique in
the context of generative AI in health care, many are also
common in other types of AI models and other AI application
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contexts. Hence, many of the recommendations we propose in
the subsequent section can be applied to AI in non–health care
contexts.

Development Protocols of Risk Assessment for
Generative AI in Health Care
AI risks, including those of generative AI in health care, can
emerge in a variety of ways at any phase of an AI project. Health
care organizations need to learn from managing risks for other
technologies to develop risk assessment protocols for generative
AI in health care, along with risk assessment metrics.

AI Risk Assessment Protocols
To systematically manage AI risks, health care organizations
must develop risk assessment protocols that include risk
assessment procedures and methodologies by following
industrial standards and frameworks as well as best practices
[63]. A total of 3 main risk assessment activities are involved
in the protocol development: risk identification, risk
prioritization, and risk controls. All 3 activities must be
conducted throughout the life cycle of a generative AI system
in health care.

In the data collection and processing phase, health care
organizations can use several methods to identify, prioritize,
and control AI risks. As discussed before, health care data are
messy and tend to have organic biases (eg, a hospital specializes
in serving a particular patient demographic, attending to
gender-specific health requirements or offering dedicated care
for rare diseases). When collecting data or using GANs to
generate synthetic data, the health care field needs to be
extremely diligent. One recommendation is to establish data
collection or generation policies and procedures. The separation
of clinical and nonclinical data is necessary, given the
significantly different risks in these 2 types of data. Similarly,
the establishment of the metrics and methods to check training
data on biases for clinical and nonclinical data is also important.
Data provenance and authentication metrics can be used to
prevent collecting data from untrustworthy sources; detecting
and filtering methods can be used to identify and filter poisoned
data; and data standardization improves the quality of data
collection [57]. As the frontline defense, these prevention
mechanisms can prevent integrity and availability attacks during
this phase. Nevertheless, regardless of the mechanisms, data
collected from medical sources or generated by GANs should
reflect the comprehensive overview of a medical domain and
the complexity of the physical and digital dimensions in such
a domain to prevent biases and test for risks.

In the model training and building phase, detecting and filtering
are also important for identifying and removing adversary
training examples. Robustness, generalizability, and other
vulnerability tests (eg, black-box and white-box tests) can further
prevent integrity and availability attacks and data breaches [88].
Input reconstruction is another mechanism to pinpoint sources
of adversary training [89]. Modifying training processes and
models as well as training methods may also help to control AI
risks in this phase [57]. Given the complexity and variety of AI
models in reasoning and learning, we suggest a taxonomy
approach. For example, a deep learning model can carry

significantly different risks than a probabilistic learning model.
By building a taxonomy of AI models and their risks, researchers
can systematically identify and control security and privacy
risks based on the AI model.

In the model implementation phase, routine verification and
validation are key to identifying and controlling AI risks [63].
The implementation contexts of generative AI also matter. In
some cases, verification and validation are about not only factual
accuracy but also communications and perceptions as well as
cultures. A medical chatbot that was thoroughly tested in adult
populations may not be very useful in teenage populations.
Gesture and face recognition AI for medical diagnosis may need
to be culturally sensitive to be useful. When generative AI is
integrated and interacts with other systems, for example, to
create multiagent systems or medical robotics (eg, companion
robots), security tests along with social, philosophical, and
ethical tests are a must.

AI Risk Assessment Metrics
Given the complexity of AI security and privacy risks, health
care organizations should develop risk assessment metrics for
each of the 3 phases of the life cycle of a generative AI project.
The following subsections highlight some measures for AI risk
assessment metrics.

Security Objectives

AI risk assessment metrics should include well-established
security and privacy objectives such as confidentiality, integrity,
availability, nonrepudiation, authentication, and privacy
protection. In the data collection and processing phase,
collection technologies should be evaluated regardless of
software- or hardware-based collection to ensure that they meet
the security and privacy objectives. The use of synthetic medical
data should follow the same security and privacy objectives to
ensure that such data capture the factual and scientific truth. In
the model training and building phase, vulnerability tests should
be conducted to identify known and unknown threats based on
security objectives. For example, availability attacks such as
denial of service can be used to flood conversational health AI
applications to assess their resilience and availability before
deployment, and integrity attacks with poisoned data can be
used to test the stability of model performance and
generalizability [57]. In the implementation phase, all security
objectives should be routinely assessed.

Generative AI–Specific Metrics

AI Inscrutability
AI inscrutability refers to the lack of understandability of an AI
model and its outcomes [63]. Although AI inscrutability is not
directly related to security and privacy, it adds obfuscations to
AI risk assessment to identify threats and vulnerabilities as well
as biases owing to the lack of transparency and explainability
in AI, especially in generative AI based on deep learning.
Although we have identified AI inscrutability as a key metric
for generative AI assessment, we acknowledge that the challenge
of inscrutability is not unique to generative AI and has been a
long-standing issue in the broader field of AI, particularly in
health care. Various algorithms used in patient matching,
diagnosis, and other proprietary applications often lack
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transparency because of their closed nature or intellectual
property constraints. Therefore, many of them, even those that
are not based on generative techniques, face similar scrutiny
regarding their lack of transparency. Hence, the call for greater
openness and explainability applies broadly across AI
applications in health care, reflecting a growing demand for
accountable and interpretable AI systems.

Nevertheless, the problem of inscrutability becomes pronounced
in the context of generative AI because of its complex and often
opaque decision-making processes, which can amplify the
challenges already faced in health care AI. Generative AI
models, especially when based on deep learning, can operate
as “black boxes,” making it even more difficult for practitioners
to understand how conclusions or recommendations are derived.
This opacity is a critical concern in health care, where
explainability and trust as well as accountability are paramount
for clinical acceptance and ethical practice.

To address these concerns, there is a need for concerted efforts
toward developing more interpretable AI models and regulatory
frameworks that mandate transparency in AI applications,
including those used in patient care. These efforts should be
complemented by initiatives to educate health care professionals
about the workings and limitations of AI tools, enabling them
to make informed decisions while using these technologies in
clinical settings. Therefore, although the inscrutability of
generative AI presents specific challenges owing to the
complexity and novelty of these models, it is a continuation of
the broader issue of transparency in health care AI. Recognizing
this, our discussion of AI inscrutability not only highlights the
unique aspects of generative AI but also situates it within the
ongoing discourse on the need for greater transparency and
accountability in all AI applications in health care.

AI Trustworthiness
AI trustworthiness is defined as the degree to which stakeholders
of an AI system have confidence in its various attributes [63,90].
Trust has been a significant factor in IT adoption. The
fundamental argument is that if an IT system automatically runs
behind the scenes to assist the work and decisions of human
users, a trusting relationship must be established for users to
interact with and rely on the system [91]. Nevertheless, trust is
a complex concept and is built upon human users’ interaction
and consequent assessment of the system from cognitive,
emotional, and social dimensions [91-93]. Since the emergence
of AI, AI trustworthiness has caught significant attention in
research, given the foreseeable complexity of human-AI
interaction. The rise of generative AI has stimulated more
discussions on this topic. The current consensus is that AI
trustworthiness itself is a complex measurement with multiple
dimensions, such as reliability, resilience, accuracy, and
completeness [63,90]. Many other AI metrics or factors, such
as transparency, explainability, robustness, fairness, and user
interactions or perceptions, can be the antecedents of AI
trustworthiness. AI trustworthiness can also be context
dependent. For example, explainability and interaction
experience can be the determinants of the AI trustworthiness
of a chatbot application on the patient portal, whereas reliability,
accuracy, and completeness are significant factors in the AI

trustworthiness of a radiology diagnosis AI for radiologists.
Given the complexity of measuring AI trustworthiness, we
recommend developing context-specific AI trustworthiness
metrics. Similar to AI inscrutability, although AI trustworthiness
is not a direct measure of security and privacy risks, it helps
reduce the probability and magnitude of such risks throughout
the life cycle of generative AI in health care. For instance,
accuracy and reliability help to improve the integrity of an AI
system.

AI Responsibility
AI responsibility is another key measure in AI risk assessment.
Again, although this measure does not directly evaluate security
and privacy risks, it endorses responsible AI practices that
facilitate the discovery of the negative consequences and risks
of AI, including the security and privacy risks of generative AI.
Moreover, this measure is centered on the uniqueness of AI,
especially generative AI, in “human centricity, social
responsibility, and sustainability” [63]. In other words, AI
responsibility is a multifaceted measure depending on many
other metrics and factors such as the ethical framework (eg,
biases, fairness, and transparency) and legal perspective (eg,
accountability and traceability). This is also an emerging concept
that is under development. The development and deployment
of generative AI add complexity to this measure owing to its
possible, unintended, but profound negative consequences and
risks to human society. In health care, there is a legal ambiguity
related to AI responsibility. Hospitals are still unclear about
their legal liability when facing an AI incident. Despite such
legal uncertainty, responsible AI use should be the baseline.
We recommend that health care organizations use AI for
consultation and assistance instead of replacement, given legal
ambiguity and uncertainty, while intensively exploring
generative AI from the perspectives of patient centricity and
social responsibility and asking serious questions. For example,
a generative drug discovery AI may find a new molecular
formula for a biochemical weapon. How can we responsibly
use such AI without crossing the line of no harm to human
beings? Such a question leads to another key measure for AI
risk assessment—AI harm.

AI Harm
AI harm can occur to individuals, organizations, and societies.
For example, AI may cause physical harm to individual patients,
damage a hospital’s reputation owing to AI incidents, and even
endanger society if it is weaponized (eg, being used to disrupt
the global drug manufacturing and supply chain). Hence, AI
harm is a risk measure highly related to AI responsibility and
trustworthiness. Developing trustworthy AI and following
responsible AI practices can reduce or avoid AI harm.

It is worth mentioning that some of the metrics we proposed
here pass some human characteristics into AI. A crucial
philosophical distinction must be made regarding the attribution
of human characteristics such as trustworthiness and
responsibility to generative AI systems versus the health care
organizations and technology partners developing these
algorithms. Although metrics aim to make models appear more
trustworthy and responsible in reality, trust emerges from
human-centered institutional processes, and responsibility stems
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from human accountability. It may be challenging to humanize
AI systems and transfer attributes such as trustworthiness to the
algorithms themselves. Indicators of model transparency,
reliability, or accuracy may engender confidence among
stakeholders, but public trust fundamentally arises from the
ethical data governance, risk communication, and oversight
procedures instantiated by organizations. Without robust
governance and review processes overseeing development, data
practices, and risk monitoring, claims of AI trustworthiness lack
substantiation. Similarly, although algorithmic outputs
highlighting potential issues such as biases or errors increase
awareness, this does not intrinsically amount to AI
responsibility. True accountability involves diligent human
investigation of problems that surface, enacting appropriate
recourse, and continuous authority oversight. Metrics may aim
for AI to appear more responsible, but responsibility mainly
manifests in organizational commitment to discovering issues,
working with experts to properly assess AI harms, and instituting
robust redress processes with stakeholder input. Thus,
trustworthiness and responsibility are contingent on extensive
institutional support structures rather than innate model
capabilities. Although progress indicators may serve as signals
for these desired attributes, establishing genuine public trust
and accountability in health care ultimately falls on the shoulders
of health care administrators, innovators, and engaged
communities, rather than solely on the algorithms themselves.
Clarifying this distinction enables us to properly set expectations
and delineate responsibilities as generative AI becomes
increasingly prevalent in critical medical settings.

Conclusions
Integrating generative AI systems into health care offers
immense potential to transform medical diagnostics, research,
treatment planning, and patient care. However, deploying these
data-intensive technologies also introduces complex privacy

and security challenges that must be proactively addressed to
ensure the safe and effective use of these systems. Examining
diverse applications of generative AI across medical domains
(ie, medical diagnostics, drug discovery, virtual health assistants,
medical research, and clinical decision support) helps this study
uncover vulnerabilities and threats across the life cycle of these
systems, from data collection to model development to clinical
implementation. Although generative AI enables innovative
use cases, adequate safeguards are needed to prevent breaches
of PHI and to maintain public trust. Strategies such as
developing AI risk assessment protocols; formulating specific
metrics for generative AI such as inscrutability, trustworthiness,
responsibility, and harm; and ongoing model monitoring can
help mitigate risks. However, developing robust governance
frameworks and updates to data privacy regulations are also
required to oversee these rapidly evolving technologies. By
analyzing the use cases, impacts, and risks of generative AI
across diverse domains within health care, this study contributes
to theoretical discussions surrounding AI ethics, security
vulnerabilities, and data privacy regulations. Future research
and development in generative AI systems should emphasize
security and privacy to ensure the responsible and trustworthy
use of these AI models in health care. Moreover, the security
and privacy concerns highlighted in this analysis should serve
as a call to action for both the AI community and health care
organizations looking to integrate generative AI. Collaborative
efforts between AI developers, health care providers, policy
makers, and domain experts will be critical to unlocking the
benefits of generative AI while also prioritizing ethics,
accountability, and safety. By laying the groundwork to make
security and privacy the central pillars of generative AI in
medicine, stakeholders can work to ensure that these
transformative technologies are harnessed responsibly for
patients worldwide.
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