
A ‘92 
Vancouver, British Columbia, Canada 

5 - 10 October 1992 

Addendum 
to the 

Proceedings 

Experience Report- 
The WyCash Portfolio Management System 

Report by: 
Ward Cunningham 
Cunningham & Cunningham, Inc. 

U.S. pension funds, corporations, and banks invest 
billions of dollars in the “cash” markets. Cash 
securities are generally considered those with a 
remaining term to maturity of less than one year, but 
can include those with maturities as long as five 
years. Incredibly diverse in nature, cash securities are 
actually negotiated between issuer and buyer, and 
new security types are frequently introduced into the 
market. WyCASH+ is a portfolio management 
system which provides basic accounting, record- 
keeping and reporting, as well as analytical 
computations to assist the manager of cash 
portfolios. 

For the development of WyCASH+, Wyatt 
Software chose to employ object technology in order 
to quickly and effectively address the diversity 
present in the market. Objects help in two ways. 
First, many security types fit nicely into an 
inheritance hierarchy which is directly supported by 
our language (Smalltalk) saving us considerable 
effort in coding. Second, changing market demands 
often require massive revisions which we have been 
able to accommodate because of the modularity 
intrinsic in a totally object-oriented 
implementation. Our customers value our 
responsiveness as much as, if not more than, our 
product’s fit to their current needs. 

We developed the product by incremental growth 
from a working prototype. Each member of our 
small engineering team maintains at least general 

knowledge of all aspects of the roughly four 
megabytes of source code. This includes some 
libraries provided by the vendor and others written 
to our specification by third-party contractors. 
Mature sections of the program have been revised or 
rewritten many times providing the consolidation 
that is key to understanding and continued 
incremental development. 

We found that some key implementation ideas were 
slow to emerge in the course of WyCash’s 
development. Although many of our objects are 
derived directly from things or concepts that appear 
in documentation, and others were easily drawn from 
the collective experience of our programmers, a 
third, and more tantalizing, category of objects only 
surfaced through a process we could call Incremental 
Design Repair. We found these highly leveraged 
abstractions only because we were willing to 
reconsider architectural decisions in the light of 
recent experience. The same flexibility that allowed 
us to tackle diversity in our problem domain, 
specifically the flexibility afforded by the universal 
use of polymorphic messages sends (i.e. pure object- 
oriented programming), allowed us to include 
architectural revisions in the production program 
that would be judged too dangerous for inclusion 
under any other circumstance. For example, it was 
not uncommon for a new feature to fit poorly into an 
existing object architecture. Polymorphism gave us 
the option of revising the architecture for only some 
of the program features. Our newly designed objects 

5-10 October 1992 -29- Addendum to the Proceedings 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F157710.157715&domain=pdf&date_stamp=1992-12-01


could coexist with objects of an earlier design 
allowing us to defer conversion work until later 
releases. This had the added advantage of allowing 
our programmers to familiarize themselves with the 
new architecture as time became available. The 
ultimate removal of the immature architecture 
would leave us with a program that had been 
simplified in the course of adding features-a truly 
enviable situation. 

We believe this process leads to the most appropriate 
product in the shortest possible time, Although 
immature code may work fine and be completely 
acceptable to the customer, excess quantities will 
make a program unmasterable, leading to extreme 
specialization of programmers and finally an 
inflexible product. Shipping first time code is like 
going into debt. A little debt speeds development so 
long as it is paid back promptly with a rewrite. 
Objects make the cost of this transaction tolerable. 
The danger occurs when the debt is not repaid. Every 
minute spent on not-quite-right code counts as 
interest on that debt. Entire engineering 
organizations can be brought to a stand-still under 

the debt load of an unconsolidated implementation, 
object-oriented or otherwise. 

The traditional waterfall development cycle has 
endeavored to avoid programming catastrophe by 
working out a program in detail before programming 
begins. We watch with some interest as the 
community attempts to apply these techniques to 
objects. However, using our debt analogy, we 
recognize this amounts to preserving the concept of 
payment up-front and in-full. The modularity 
offered by objects and the practice of consolidation 
make the alternative, incremental growth, both 
feasible and desirable in the competitive financial 
software market. 

Contact information: 

Ward Cunningham 
Cunningham 8z Cunningham, Inc. 
7830 S.W. 40th Ave. 
Portland, Oregon 97219 
(503) 245-5633 

OOPSLA’92 Vancouver, British Columbia 


