
A LIBRARY FOR REPRESENTING PYTHON PROGRAMS AS
GRAPHS FOR MACHINE LEARNING

David Bieber∗
Google Research

Kensen Shi
Google Research

Petros Maniatis
Google Research

Charles Sutton
Google Research

Vincent Hellendoorn
Carnegie Mellon University

Daniel Johnson
Google Research

Daniel Tarlow
Google Research

ABSTRACT

Graph representations of programs are commonly a central element of machine learning for code
research. We introduce an open source Python library python_graphs that applies static analysis to
construct graph representations of Python programs suitable for training machine learning models.
Our library admits the construction of control-flow graphs, data-flow graphs, and composite “program
graphs” that combine control-flow, data-flow, syntactic, and lexical information about a program. We
present the capabilities and limitations of the library, perform a case study applying the library to
millions of competitive programming submissions, and showcase the library’s utility for machine
learning research.

1 Introduction

In this report we present python_graphs1, a Python library for constructing graph representations of Python programs
for use in machine learning research. This report details the capabilities and limitations of the library as they pertain to
applying machine learning to source code.

A standard class of approaches in applying machine learning to code is to construct a graph representation of a program,
and then to perform the analysis of interest on that graph representation, learning from a large dataset of labeled
example programs. Graph representations of programs used for machine learning include the abstract syntax tree
(AST), control-flow graph (CFG), data-flow graphs, inter-procedural control-flow graph (ICFG), interval graph, and
composite “program graphs” that encode information from multiple of the aforementioned graphs, possibly with
additional program-derived data.

The python_graphs library directly allows for the construction of some of these graph types (e.g., control-flow graphs
and composite program graphs) from arbitrary Python programs, and it provides tools that aid in constructing the others.
It has been used successfully in a variety of machine learning for code publications, and we make it available as free
and open source software to allow for broader use.

In Section 2 we present an overview of the use of graph representations of code in machine learning. In Section 3 we de-
scribe the capabilities (Section 3.1), possible extensions (Section 3.2), and limitations (Section 3.3) of python_graphs.
Section 4 highlights the applications of python_graphs for machine learning research. Section 5 presents a case study
applying python_graphs to 3.3 million programs from Project CodeNet [28].

2 Background

Graph representations of code in machine learning Graph representations of source code are regularly used in
machine learning research. Most common among these is the abstract syntax tree. Several works learn directly from
ASTs [4–6, 10, 18, 23, 25, 35, 36, 38, 41, 42, 45] or produce an AST as output [29, 40], while Johnson et al. [16] learns
to dynamically augment an AST with new edges useful for a downstream task. Other works operate on a program’s

∗Correspondence to: dbieber@google.com
1https://github.com/google-research/python-graphs

ar
X

iv
:2

20
8.

07
46

1v
1

 [
cs

.L
G

]
 1

5
A

ug
 2

02
2

https://github.com/google-research/python-graphs

A Library for Representing Python Programs as Graphs for Machine Learning

1 def fn1():
2 x = 0
3 for i in range(5):
4 x += i
5 return x

(a) Example function under analysis. python_graphs accepts
function objects such as fn1.

1 import ast
2 syntax_tree = ast.parse(source)

(c) AST object for code in the string source.

1 import inspect
2 source = inspect.getsource(fn1)
3

4 assert source == """def fn1():
5 x = 0
6 for i in range(5):
7 x += i
8 return x
9 """

(b) Source for fn1 as a string object. The built-in inspect
module facilitates accessing source for functions when available.

Figure 1: The input formats accepted by the python_graphs library are (a) function, (b) source code, and (c) AST.
The code snippets here demonstrate construction of each input format for the example function fn1.

control-flow graph [7, 8, 11, 34] or data-flow graph [14, 17], or joint control and data flow graph (CDFG) [33]. A
typical composite program graph uses an AST backbone with some subset of control-flow, data-flow, lexical, and
syntactic information encoded as additional edges [2, 3, 15, 21, 22, 39, 43, 44]. Swarna et al. [30] meanwhile uses
AST, CFG, and program dependence graph (PDG) representations concurrently, without unifying them into a single
graph. Pashakhanloo et al. [27] forms a graph via CodeQL queries to a database representing a program. Georgiev
et al. [12] forms a hypergraph, where edges can connect more than two nodes, containing again control-flow, data-flow,
lexical, and syntactic information. Still other representations include a program’s interval graph [37] or a graph formed
from the pointers in the heap [24]. A graph can also encode additional information, e.g., as in Tarlow et al. [31] which
constructs a graph jointly representing code, a compiler error, and a build file.

Our work directly admits constructing control-flow graphs, performing data-flow analyses, and constructing certain
composite program graphs from Python programs (Section 3.1). It can also be extended for constructing interprocedural
control-flow graphs, novel composite program graphs, additional data-flow graphs, or span-mapped graphs (Section 3.2).

Tools for constructing graph representations We compare python_graphs with existing Python static analysis
tools. Tree-sitter [9] can build a concrete syntax tree for a given source file and update it incrementally as the source
changes. It supports over 40 languages including Python. Our system must operate directly on the built-in Python
AST rather than a language agnostic syntax tree. CodeQL [26] is a query language for source code. These queries
admit searching for control-flow and data-flow paths in source code. pycfg [13] generates control-flow graphs from
Python source in a similar manner to python_graphs, but lacks support for certain language features like exceptions
and generators. Scalpel [20] similarly generates control-flow graphs from Python and also performs additional static
analyses, e.g., call graph construction. python_graphs performs data-flow analyses on top of its control-flow graphs,
producing composite program graphs containing control-flow, data-flow, syntactic, and lexical information in one graph.

3 Capabilities, Possible Extensions, and Limitations

We provide a comprehensive overview of the capabilities of the python_graphs library, a discussion of how
python_graphs can enable still further capabilities (i.e. assisting in constructing the graph types not directly supported
by the library today), and a discussion of the library’s limitations.

3.1 Capabilities

The python_graphs library enables a number of static analyses on Python source code. The main use cases are com-
puting control-flow graphs, performing data-flow analyses, constructing composite “program graphs,” and measuring
cyclomatic complexity of Python programs and functions [1]. Each of these operations may be applied to a full Python
program or an individual Python function. The library handles any of the following input types: (a) Python function, (b)
source code string, or (c) abstract syntax tree. Figure 1 shows constructing all three valid input formats for a sample
program. In all cases, the library first converts the input to an abstract syntax tree for analysis.

3.1.1 Control-Flow Graphs

A control-flow graph represents the possible paths of execution through a program. Each node in a control-flow graph
represents a basic block. A basic block is a straight-line section of source code that is executed contiguously. The

2

A Library for Representing Python Programs as Graphs for Machine Learning

1 # 1. Use control_flow to construct a CFG.
2 from python_graphs import control_flow
3 graph = control_flow.get_control_flow_graph(fn1)

1 # 2. Access a particular basic block by source.
2 block = graph.get_block_by_source("x += i")

1 # 3. Convert the CFG to a pygraphviz.AGraph.
2 from python_graphs import control_flow_graphviz
3 agraph = control_flow_graphviz.to_graphviz(graph)

(a) Example usage of python_graphs to (1) construct a CFG, (2) access
basic blocks by source, and (3) convert to pygraphviz for visualization.

n Source Control-Flow Graph

1 x = 0
.0 = range(5)
i = next(.0)
x += i
return x

2
3
4
5

(b) The statement-level control-flow graph for the
program fn1 introduced in Figure 1. .0 denotes
the iterator constructed by the for loop in fn1.

Figure 2: python_graphs supports construction and analysis of control-flow graphs for arbitrary Python functions.

only branches into a basic block enter at the start, and the only branches out of a basic block exit at the end (other
than Exceptions). An edge in a control-flow graph represents a possible path of execution. There is an edge between
node A and node B in a program’s control-flow graph if and only if it is possible to execute basic block B immediately
following the conclusion of executing basic block A [1].

In addition to producing these standard control-flow graphs, the python_graphs library can also produce statement-
level control-flow graphs. A node in a statement-level control-flow graph represents a single line or instruction, rather
than a complete basic block. An edge between two nodes indicates that the two lines may be executed in succession.
Figure 2b shows the statement-level CFG for the fn1 program.

A control-flow graph is useful for machine learning for source code in two respects. First, it is a useful representation of
code suitable for processing with graph neural networks, for example in Bieber et al. [7, 8]. Second, the control-flow
graph forms the basis for a number of further analyses including data-flow analyses (liveness analysis, reachability,
etc.), computing cyclomatic complexity, and constructing program graphs, each implemented by the python_graphs
library.

In Python, any line of code can raise an exception. Taking this form of execution into account, this limits basic blocks to
a single line of code, since a raised exception is an exit branch. Rather than restrict basic blocks to a single line of code,
we take a more pragmatic approach, and introduce a second optional edge type, “interrupting edges”, in our control-flow
graph data structure that represents control flow due to exceptions. An interrupting edge from block A to block B
indicates that an exception raised during the execution of A can cause control to flow to block B. python_graphs
control-flow graphs can be used with or without these interrupting edges.

To construct a control-flow graph with python_graphs, use the control_flow module’s get_control_flow_graph
as in Figure 2.

3.1.2 Data-Flow Analyses

A data-flow analysis computes information about how the variables in the program are used, such as which variables
are live at a given program location. A live variable is one that may be read at some point in the future before its value
is overwritten. The python_graphs library implements two best-effort data-flow analyses: liveness and last-access
analysis.

Data-flow analyses are performed through iterative application of the data-flow equations until a fixed point is reached.
The python_graphs library supports both forward and backward data-flow analysis, and so can be extended to support
additional data-flow analyses. Liveness is implemented as a backward analysis, and last-access as a forward analysis.

An example of using the liveness analysis to obtain the set of loop variables in a while loop is provided with the library,
a necessary step in rewriting Python while loops into their functional form. The data_flow module provides the
data-flow analyses, as in Figure 3.

3.1.3 Composite Program Graphs

The python_graphs library implements a single kind of composite program graph, based closely on that of Allamanis
et al. [2]. In this document we refer to these composite program graphs simply as “program graphs”, though of course
other kinds of program graphs are possible, with different node and edge types.

3

A Library for Representing Python Programs as Graphs for Machine Learning

1 # 1. Use data_flow to perform liveness analysis.
2 from python_graphs import data_flow
3 analysis = data_flow.LivenessAnalysis()
4 for block in graph.get_exit_blocks():
5 analysis.visit(block)

1 # 2. Construct a program graph with program_graph.
2 from python_graphs import program_graph
3 pg = program_graph.get_program_graph(program)

1 # 3. Access a particular node by source.
2 node = pg.get_node_by_source_and_identifier(
3 'return x', 'x')

(a) Example usage of python_graphs to (1) perform liveness analysis on
a program’s control-flow graph. Independently, (2) shows constructing a
composite program graph, and (3) accessing one of its node by source.

Source Live in Live out

1 x = 0
.0 = range(5)
i = next(.0)
x += i
return x

∅
{x}

2 {x} {x, i}
3 {x, i} {x}
4 {x} ∅

(b) The results of the liveness data-flow analysis.
Live in and live out indicate the variables that are
live at the start and end of each basic block respec-
tively. # denotes basic block number.

Figure 3: Example usage of data-flow analysis and program graph construction in python_graphs.

A program graph has the abstract syntax tree of the program it represents as its backbone. Each node in the program
graph directly corresponds to a single node in the AST, and vice versa. Lists and primitive values in the AST have
corresponding nodes in the program graph as well. Corresponding to each syntax element in the program (leaf nodes in
the AST) is a syntax node in the program graph. Each edge in the AST also appears in the program graph. The program
graph then has additional edges representing the following relationships between program pieces: “NEXT_SYNTAX”,
“LAST_LEXICAL_USE”, “CFG_NEXT”, “LAST_READ”, “LAST_WRITE”, “COMPUTED_FROM”, “CALLS”,
“FORMAL_ARG_NAME”, and “RETURNS_TO”. Collectively, the edges in a program graph convey control-flow,
data-flow, lexical, and syntactic information about the program.

We summarize the edge types and their meanings in Table 1. These edge types are also useful for constructing other
graph types (Section 3.2): interprocedural control-flow graphs, data-flow graphs, and other composite program graphs.

The python_graphs library provides the function get_program_graph for constructing a program graph from any
of the supported input types (source code, an abstract syntax tree, or Python function). Figure 3a shows example usage.

Table 2 lists several programs along with their control-flow graphs and program graphs as computed by python_graphs.

3.1.4 Cyclomatic Complexity

Cyclomatic complexity is a standard measure of program complexity based on the set of possible paths through a
program. It measures the number of linearly independent execution paths through a program. The python_graphs
library can compute the cyclomatic complexity of a Python function. This functionality is available via the function
cyclomatic_complexity, which accepts a Python function (as source, AST, or Python function object) and returns
an integer. To compute the cyclomatic complexity of a program, python_graphs first constructs its control-flow graph.
In a control-flow graph with E edges, N nodes, and P distinct connected components, the cyclomatic complexity M is
given by M = E −N + 2P .

EDGE TYPE DESCRIPTION

FIELD dest is a field of AST node src.
NEXT_SYNTAX dest is the syntax element immediately following src in top-to-bottom left-to-right order.

LAST_LEXICAL_USE The variable at node dest has its previous appearance at src in top-to-bottom left-to-right order.
CFG_NEXT The statement indicated by dest can be executed immediately following that indicated by src.

LAST_READ When src is about to execute, it may be that the variable at src was most recently read at dest.
LAST_WRITE When src is about to execute, it may be that the variable at src was most recently written to at dest.

COMPUTED_FROM src indicates a variable on an assignment’s left hand side, and dest a variable on its right hand side.
CALLS src is an AST call node, and dest is the definition of the function being called.

FORMAL_ARG_NAME src is an argument in a function call; dest is the corresponding parameter in the function definition.
RETURNS_TO src is the return node in a function definition, and dest is the AST call node that calls that function.

Table 1: An edge of the given edge type from node src to node dest has the meaning given in this table.

4

A Library for Representing Python Programs as Graphs for Machine Learning

Source n Statement CFG Program Graph

1
def fn1(a, b):
return a + b

1 a, b ← args
return a + b
<exit> Figure 6

2
3

2

def fn2(a, b):
c = a
if a > b:
c -= b

return c

1 a, b ← args
c = a
a > b
c -= b
return c
<exit> Figure 7

2
3
4
5
6

3

def fn3(a, b):
c = a
if a > b:
c -= b
c += 1
c += 2
c += 3

else:
c += b

return c

1 a, b ← args
c = a
a > b
c -= b
c += 1
c += 2
c += 3
c += b
return c
<exit> Figure 8

2
3
4
5
6
7
8
9

10

4

def fn4(i):
count = 0
for i in range(i):
count += 1

return count

1 i ← args
count = 0
range(i)
i ← iter
count += 1
return count
<exit> Figure 9

2
3
4
5
6
7

5

def fn5(i):
count = 0
for _ in range(i):
if count > 5:
break

count += 1
return count

1 i ← args
count = 0
range(i)
_ ← iter
count > 5
count += 1
return count
<exit> Figure 10

2
3
4
5
6
7
8

6

def fn6():
count = 0
while count < 10:
count += 1

return count

1 count = 0
count < 10
count += 1
return count
<exit> Figure 11

2
3
4
5

7

def fn7():
try:
raise ValueError('N/A')

except ValueError as e:
del e

return

1 raise ValueError('N/A')
ValueError
e ← exception
del e
return
<exit> Figure 12

2
3
4
5
6

8
def fn8(a):
a += 1

1 a ← args
a += 1
<exit> Figure 13

2
3

Table 2: Example programs and their associated control-flow graphs and program graphs. Enlarged versions of the
program graph figures are included in Appendix A.

5

A Library for Representing Python Programs as Graphs for Machine Learning

3.2 Possible Extensions

The following capabilities are possible to implement using python_graphs, but are not directly provided by
python_graphs out of the box.

3.2.1 Alternative Composite Program Graphs

The program graphs generated by python_graphs’s get_program_graph make specific choices for what nodes and
edges are included in the graph. Other choices are possible. For alternative composite program graph schemes, the
source of python_graphs’s get_program_graph function serves as an illustrative example for how to construct a
composite program graph with the desired set of nodes and edges.

3.2.2 Inter-procedural Control-Flow Graphs

python_graphs’s get_control_flow_graph function constructs the control-flow graph for a single function or
program; it does not include edges indicating control flow between functions.

An interprocedural control-flow graph (ICFG) is a control-flow graph that shows the control flow possible between
functions, not just within a function. We can view an ICFG as a composite program graph consisting of the control-
flow graphs of a program and all its functions, as well as CALLS and RETURNS_TO edges indicating the possible
interprocedural control flows in the program. python_graphs provides the capability for constructing the necessary
control-flow graphs and additional edges, making it possible to write a function to construct ICFGs as well.

3.2.3 Data-Flow Graphs

A data-flow graph represents the data dependencies present in a program. The nodes in a data-flow graph represent
the variable access locations in a program, and the edges in a data-flow graph denote relationships between these
accesses. An example of such a relationship is an edge with dest indicating where a variable is assigned to and src
indicating where the assigned value is subsequently used (equivalent to python_graphs’s LAST_WRITE edges). We
can therefore view data-flow graphs as composite program graphs consisting of a subset of AST nodes (just those
representing variable accesses) and selected edge types like LAST_READ or LAST_WRITE.

3.2.4 Span-Mapped Graphs

In order to use the graphs produced by the python_graphs library for machine learning applications, it can be useful
to tokenize the sections of code corresponding to each node. We suggest two approaches to handling this: (1) whole
program tokenization and (2) per-node tokenization.

In whole program tokenization we tokenize the entire program first. Then, using python_graphs, we create a graph
structure for the program. Finally we extract for each node the span of tokens from the whole program tokenization
corresponding to that node. This approach allows for the possibility that a token consisting of multiple characters will
be part of two consecutive nodes, and we must choose which node(s) to associate that token with.

In per-node tokenization, we instead split the program source into chunks according to which node in the graph they are
part of, and then tokenize those chunks independently.

The key data required by these approaches is a mapping from a graph node to a span in the textual representation of
program source (approaches 1 and 2) or to a span in the tokenized representation of program source (approach 1 only).
We call a graph augmented with this data a span-mapped graph. Both approaches are possible using python_graphs.
Bieber et al. [8] uses approach 1, with code freely available online2. This same code example is informative for any
project wishing to implement approach 2.

3.2.5 Additional Data-Flow Analyses

python_graphs implements liveness and last-access data-flow analyses, and provides a framework for implementing
additional analyses. This framework allows somewhat straightforward implementation of definite assignment analysis
or computing reaching definitions, for example.

2https://github.com/google-research/runtime-error-prediction

6

A Library for Representing Python Programs as Graphs for Machine Learning

3.3 Limitations

Python source code is difficult to analyze statically because so much of Python’s behavior is determined dynamically.
We perform a “best-effort” analysis, which we do not guarantee will be correct considering all of Python’s language
features. Inspection in Python allows manipulation of stack frames or of local or global variables, causing hard-to-detect
effects on data and control flow. Eval and exec permit the execution of arbitrary code constructed dynamically and
inaccessible to our analysis. Operations can be overloaded dynamically, so e.g. even a simple addition operation can
have effects overlooked by our analyses. These language features are empowering to Python users, but restrict the
guarantees our analyses can provide.

4 Use cases

We next show how the python_graphs library is used in machine learning research. Uses include both building graph
representations of programs as inputs to neural networks, and providing supervision for models that output graphs.

4.1 Graph Representations as Model Inputs

Instruction Pointer Attention Graph Neural Networks The instruction pointer attention graph neural network
(IPA-GNN) model family [7, 8] operates on control-flow graphs as its primary input. IPA-GNN architectures then
perform a soft execution of the input program, maintaining a soft instruction pointer representing at each model
step a probability distribution over the statements in a program. These works use python_graphs to produce the
control-flow graphs for the programs under consideration, which include both simple synthetic programs [7] and
complex human-authored programs from a competition setting [8].

The original IPA-GNN work [7] uses the control-flow edges as produced by python_graphs’s default settings, and
represents each statement with a 4-tuple of values, which is possible because the domain of statements is restricted. By
contrast, the follow-up work on competition programs [8] uses a larger control-flow graph that additionally includes
interrupting edges, indicating to where control would flow from each node if an exception were raised during the
execution of that node. Further, a sequence of tokens is associated with each node in the control-flow graph, following
Section 3.2.4, allowing it to handle arbitrary human-authored Python statements.

Global Relational Models of Source Code Hellendoorn et al. [15] investigates models that combine global infor-
mation (like a Transformer) and structural information (like a GNN), i.e., Graph-Sandwich models and the GREAT
(Graph-Relational Embedding Attention Transformer) model. This paper uses python_graphs to construct the com-
posite program graphs of Section 3.1.3. The models accept these program graphs as input and uses them to identify
variable misuse bugs.

4.2 Program Graphs as Targets

Graph Finite-State Automaton (GFSA) Layers Johnson et al. [16] introduces a neural network layer that adds a
new learned edge type to an input graph. Toward learning static analyses of Python code, it trains a neural model to take
an AST as input and predict a composite program graph as output. The model thereby learns to perform both control-
flow and data-flow analyses from data. For its targets, it produces a composite program graph with python_graphs,
selecting a subset of the default edge types and introducing a few additional edge types (as in Section 3.2.1).

Learning to Extend Program Graphs to Work-in-Progress Code Li et al. [22] learns to predict edge relations
from work-in-progress code, even when the code does not parse. The composite program graphs of Section 3.1.3 form
the ground truth edge relation targets for this work.

5 Case Study: Project CodeNet

In order to evaluate the python_graphs library on the diversity of language features found in realistic code, we
obtain a dataset of 3.3 million programs from Project CodeNet [28]. For each program, we use python_graphs to
construct a control-flow graph and a composite program graph complete with syntactic, control-flow, data-flow, and
lexical information about the program. We collect metrics about the resulting graphs to provide information about the
robustness of python_graphs and the size, complexity, and connectedness of the program graphs it produces.

python_graphs cannot construct graph representations for every submission in Project CodeNet, as many of them do
not parse. Table 3 shows how many of the programs graph construction succeeds for, as well as the failure reasons for the

7

A Library for Representing Python Programs as Graphs for Machine Learning

Status # Programs Freq. (%)
Success 3,157,463 96.08
ast.parse failures 126,751 3.86

SyntaxError 114,817 3.49
IndentationError 8,893 0.27
TabError 3,032 0.09
RecursionError 5 0.00
ValueError 4 0.00

RuntimeError 2,100 0.06
return outside function 1,719 0.05
break outside loop 330 0.01
continue outside loop 51 0.00

Total 3,286,314 100%

Table 3: Control-flow graph construction success rates on
a dataset of both valid and invalid Python submissions to
competitive programming problems.

Edge Type # / Program Freq. (%)
FIELD 370.4 100.00

SYNTAX 163.4 99.99
NEXT_SYNTAX 162.4 99.99

LAST_LEXICAL_USE 26.1 99.12
CFG_NEXT 18.1 99.06

LAST_READ 38.0 92.29
LAST_WRITE 30.6 98.83

COMPUTED_FROM 11.7 98.55
CALLS 0.5 21.37

FORMAL_ARG_NAME 0.6 12.99
RETURNS_TO 0.7 15.56

Table 4: Frequencies of edge types in the composite pro-
gram graphs for the Project CodeNet Python submissions.
/ Program is the average number of occurrences of the
edge type across all programs. Freq. (%) shows the percent
of programs exhibiting the edge type at least once.

remaining graphs. The programs for which python_graphs cannot produce graph representations are predominantly
those which fail to parse under Python’s own parser: ast.parse. The majority of such programs cause the parser to
raise a SyntaxError, IndentationError, or TabError, with just nine leading the built in parser to raise a RecursionError
or ValueError. The python_graphs library rejects an additional 2100 programs (0.07%) because they contain either
return outside of a function body, or break or continue outside of a loop. In total, this result gives us confidence
there are no language feature corner cases that elude the python_graphs library and cause failures for well-formed
programs that otherwise can be run by a standard Python interpreter. In Table 4 we report for each program graph edge
type the fraction of programs it appears in as well as the mean number of appearances across all programs.

We next use python_graphs to measure the cyclomatic complexity of each of the submissions. Figure 4 plots the
relationship between program length and cyclomatic complexity. We measure program length in non-empty lines of

0 160 320 480 640
Program length (LOC)

0

40

80

120

160

Cy
cl

om
at

ic
 c

om
pl

ex
ity

y = 0.22x + 0.95
R2 = 0.896

Figure 4: The relationship between program length and
cyclomatic complexity for Python submissions in Project
CodeNet.

Figure 5: Box plots for various metrics of program graphs
for Python submissions in Project CodeNet. The vertical
blue line in each boxplot shows the median of the data as
usual, while the blue × shows the mean.

8

A Library for Representing Python Programs as Graphs for Machine Learning

Metric Min Median Mean Max
Node Count 3 364 534.8 751,817
Edge Count 2 548 822.4 4,675,600
Maximum Degree 2 19 21.6 150,004
Mean Degree 1.3 3.0 3.0 79.9
AST Height 1 9 9.5 269
Diameter 2 13 13.0 143
Maximum Betweenness Centrality 0.0 0.3 0.3 1.0

Table 5: Summary statistics for various graph metrics across the dataset. The diameter and maximum betweenness
centrality metrics do not include graphs exceeding 5000 nodes.

code (LOC). Omitting as outliers those programs longer than 800 LOC or with complexity exceeding 200 (just 118
programs out of 3.16 million), we perform linear regression and observe R2 = 0.896, in line with prior work [19, 32].

We measure the size of program graphs according to their node counts and edge counts, the height of their AST
backbone, and graph diameter. As measures of connectedness, we compute the maximum degree of a node, mean
degree of the nodes, and maximum betweenness centrality of a node in the graph. The distributions of each of these
metrics are shown with boxplots in Figure 5, and key summary statistics are listed in Table 5. Appendix B contains
histograms showing the distribution of each metric across the dataset. These metrics convey the scale and diversity of
submissions to online programming contests and the graph sizes needed for processing these submissions as python
graphs with graph neural networks.

6 Discussion

The core capabilities of python_graphs for machine learning research are generating control-flow graphs, performing
data-flow analyses, generating composite program graphs, and computing cyclomatic complexity of Python programs.
For our research, we have been fruitfully using python_graphs for graph representations of programs for multiple
years. The library is robust and flexible, having been successfully run on millions of programs and used in several
published papers. Still, several open challenges remain for providing insights into program semantics to machine
learners. First, due to the dynamic nature of Python the library’s analyses are limited to providing best-effort results,
not considering the possible effects of e.g. dynamic execution or introspection. A further key limitation of the library is
its restriction to processing Python programs. This makes getting a consistent graph representation across programming
languages challenging, which is important when training a multi-lingual model of code. While significant recent
progress has been made in machine learning for code research, many fundamental problems in the space remain open
research challenges. Examples of these challenges include learning about program semantics from end-to-end program
behavior, and identifying neural models exhibiting systematic generalization. For these challenges, where the structure
and semantics of programs are important, python_graphs provides a framework to study how graph representations
of programs may contribute to forward progress.

9

A Library for Representing Python Programs as Graphs for Machine Learning

References
[1] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques, and Tools

(2nd Edition). Addison-Wesley Longman Publishing Co., Inc., USA, 2006. ISBN 0321486811.

[2] Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi. Learning to represent programs with graphs.
In International Conference on Learning Representations, 2018. URL https://openreview.net/forum?id=
BJOFETxR-.

[3] Miltiadis Allamanis, Henry Jackson-Flux, and Marc Brockschmidt. Self-supervised bug detection and repair,
2021. URL https://arxiv.org/abs/2105.12787.

[4] Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav. code2seq: Generating sequences from structured
representations of code, 2018. URL https://arxiv.org/abs/1808.01400.

[5] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. code2vec: Learning distributed representations of code,
2018. URL https://arxiv.org/abs/1803.09473.

[6] Uri Alon, Roy Sadaka, Omer Levy, and Eran Yahav. Structural language models of code, 2019. URL https:
//arxiv.org/abs/1910.00577.

[7] David Bieber, Charles Sutton, Hugo Larochelle, and Daniel Tarlow. Learning to execute programs with instruction
pointer attention graph neural networks, 2020.

[8] David Bieber, Rishab Goel, Daniel Zheng, Hugo Larochelle, and Daniel Tarlow. Static prediction of runtime
errors by learning to execute programs with external resource descriptions, 2022. URL https://arxiv.org/
abs/2203.03771.

[9] Max Brunsfeld, Patrick Thomson, Andrew Hlynskyi, Josh Vera, Phil Turnbull, Timothy Clem, Douglas Creager,
Andrew Helwer, Rob Rix, Hendrik van Antwerpen, Michael Davis, Ika, Tuan-Anh Nguyen, Stafford Brunk,
Niranjan Hasabnis, bfredl, Mingkai Dong, Vladimir Panteleev, ikrima, Steven Kalt, Kolja Lampe, Alex Pinkus,
Mark Schmitz, Matthew Krupcale, narpfel, Santos Gallegos, Vicent Martí, Edgar, and George Fraser. tree-
sitter/tree-sitter: v0.20.6, March 2022. URL https://doi.org/10.5281/zenodo.6326492.

[10] Nghi D. Q. Bui, Yijun Yu, and Lingxiao Jiang. Infercode: Self-supervised learning of code representations by
predicting subtrees, 2020. URL https://arxiv.org/abs/2012.07023.

[11] Daniel DeFreez, Aditya V. Thakur, and Cindy Rubio-González. Path-based function embedding and its application
to specification mining, 2018. URL https://arxiv.org/abs/1802.07779.

[12] Dobrik Georgiev, Marc Brockschmidt, and Miltiadis Allamanis. HEAT: Hyperedge attention networks, 2022.
URL https://arxiv.org/abs/2201.12113.

[13] Rahul Gopinath. pycfg: The Python control flow graph. URL https://rahul.gopinath.org/post/2019/
12/08/python-controlflow/.

[14] Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long Zhou, Nan Duan, Alexey
Svyatkovskiy, Shengyu Fu, Michele Tufano, Shao Kun Deng, Colin Clement, Dawn Drain, Neel Sundaresan, Jian
Yin, Daxin Jiang, and Ming Zhou. GraphCodeBERT: Pre-training code representations with data flow, 2020. URL
https://arxiv.org/abs/2009.08366.

[15] Vincent J. Hellendoorn, Charles Sutton, Rishabh Singh, Petros Maniatis, and David Bieber. Global relational
models of source code. In International Conference on Learning Representations, 2020. URL https://
openreview.net/forum?id=B1lnbRNtwr.

[16] Daniel D. Johnson, Hugo Larochelle, and Daniel Tarlow. Learning graph structure with a finite-state automaton
layer, 2020.

[17] Samuel J. Kaufman, Phitchaya Mangpo Phothilimthana, Yanqi Zhou, Charith Mendis, Sudip Roy, Amit Sabne,
and Mike Burrows. A learned performance model for tensor processing units, 2020. URL https://arxiv.org/
abs/2008.01040.

[18] Seohyun Kim, Jinman Zhao, Yuchi Tian, and Satish Chandra. Code prediction by feeding trees to transformers,
2020. URL https://arxiv.org/abs/2003.13848.

[19] Davy Landman, Alexander Serebrenik, and Jurgen Vinju. Empirical analysis of the relationship between CC
and SLOC in a large corpus of Java methods. In IEEE International Conference on Software Maintenance and
Evolution, pages 221–230, 2014. doi: 10.1109/ICSME.2014.44.

[20] Li Li, Jiawei Wang, and Haowei Quan. Scalpel: The Python static analysis framework, 2022. URL https:
//arxiv.org/abs/2202.11840.

10

https://openreview.net/forum?id=BJOFETxR-
https://openreview.net/forum?id=BJOFETxR-
https://arxiv.org/abs/2105.12787
https://arxiv.org/abs/1808.01400
https://arxiv.org/abs/1803.09473
https://arxiv.org/abs/1910.00577
https://arxiv.org/abs/1910.00577
https://arxiv.org/abs/2203.03771
https://arxiv.org/abs/2203.03771
https://doi.org/10.5281/zenodo.6326492
https://arxiv.org/abs/2012.07023
https://arxiv.org/abs/1802.07779
https://arxiv.org/abs/2201.12113
https://rahul.gopinath.org/post/2019/12/08/python-controlflow/
https://rahul.gopinath.org/post/2019/12/08/python-controlflow/
https://arxiv.org/abs/2009.08366
https://openreview.net/forum?id=B1lnbRNtwr
https://openreview.net/forum?id=B1lnbRNtwr
https://arxiv.org/abs/2008.01040
https://arxiv.org/abs/2008.01040
https://arxiv.org/abs/2003.13848
https://arxiv.org/abs/2202.11840
https://arxiv.org/abs/2202.11840

A Library for Representing Python Programs as Graphs for Machine Learning

[21] Mingzhe Li, Jianrui Pei, Jin He, Kevin Song, Frank Che, Yongfeng Huang, and Chitai Wang. Using GGNN to
recommend log statement level, 2019. URL https://arxiv.org/abs/1912.05097.

[22] Xuechen Li, Chris J. Maddison, and Daniel Tarlow. Learning to extend program graphs to work-in-progress code,
2021. URL https://arxiv.org/abs/2105.14038.

[23] Yi Li, Shaohua Wang, and Tien N. Nguyen. Fault localization with code coverage representation learning, 2021.
URL https://arxiv.org/abs/2103.00270.

[24] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph sequence neural networks, 2015.
URL https://arxiv.org/abs/1511.05493.

[25] Shangqing Liu, Cuiyun Gao, Sen Chen, Lun Yiu Nie, and Yang Liu. Atom: Commit message generation based on
abstract syntax tree and hybrid ranking, 2019. URL https://arxiv.org/abs/1912.02972.

[26] Oege de Moor, Mathieu Verbaere, Elnar Hajiyev, Pavel Avgustinov, Torbjorn Ekman, Neil Ongkingco, Damien
Sereni, and Julian Tibble. Keynote address: .ql for source code analysis. In Seventh IEEE International Working
Conference on Source Code Analysis and Manipulation (SCAM 2007), pages 3–16, 2007. doi: 10.1109/SCAM.
2007.31.

[27] Pardis Pashakhanloo, Aaditya Naik, Yuepeng Wang, Hanjun Dai, Petros Maniatis, and Mayur Naik. CodeTrek:
Flexible modeling of code using an extensible relational representation. In International Conference on Learning
Representations, 2022. URL https://openreview.net/forum?id=WQc075jmBmf.

[28] Ruchir Puri, David S. Kung, Geert Janssen, Wei Zhang, Giacomo Domeniconi, Vladimir Zolotov, Julian Dolby,
Jie Chen, Mihir Choudhury, Lindsey Decker, Veronika Thost, Luca Buratti, Saurabh Pujar, Shyam Ramji, Ulrich
Finkler, Susan Malaika, and Frederick Reiss. CodeNet: A large-scale AI for code dataset for learning a diversity
of coding tasks, 2021. URL https://arxiv.org/abs/2105.12655.

[29] Maxim Rabinovich, Mitchell Stern, and Dan Klein. Abstract syntax networks for code generation and semantic
parsing, 2017. URL https://arxiv.org/abs/1704.07535.

[30] Karthik Chandra Swarna, Noble Saji Mathews, Dheeraj Vagavolu, and Sridhar Chimalakonda. A mocktail of
source code representations, 2021. URL https://arxiv.org/abs/2106.10918.

[31] Daniel Tarlow, Subhodeep Moitra, Andrew Rice, Zimin Chen, Pierre-Antoine Manzagol, Charles Sutton, and
Edward Aftandilian. Learning to fix build errors with graph2diff neural networks, 2019. URL https://arxiv.
org/abs/1911.01205.

[32] Yahya Tashtoush, Mohammed Al-Maolegi, and Bassam Arkok. The correlation among software complexity
metrics with case study. 2014. doi: 10.48550/ARXIV.1408.4523. URL https://arxiv.org/abs/1408.4523.

[33] Shobha Vasudevan, Wenjie (Joe) Jiang, David Bieber, Rishabh Singh, hamid shojaei, C. Richard Ho, and Charles
Sutton. Learning semantic representations to verify hardware designs. In M. Ranzato, A. Beygelzimer, Y. Dauphin,
P.S. Liang, and J. Wortman Vaughan, editors, Advances in Neural Information Processing Systems, volume 34,
pages 23491–23504. Curran Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper/2021/
file/c5aa65949d20f6b20e1a922c13d974e7-Paper.pdf.

[34] Anh Viet Phan, Minh Le Nguyen, and Lam Thu Bui. Convolutional neural networks over control flow graphs
for software defect prediction. In 2017 IEEE 29th International Conference on Tools with Artificial Intelligence
(ICTAI), pages 45–52, 2017. doi: 10.1109/ICTAI.2017.00019.

[35] Wenhan Wang, Ge Li, Sijie Shen, Xin Xia, and Zhi Jin. Modular tree network for source code representation
learning, 2021. URL https://arxiv.org/abs/2104.00196.

[36] Yanlin Wang and Hui Li. Code completion by modeling flattened abstract syntax trees as graphs, 2021. URL
https://arxiv.org/abs/2103.09499.

[37] Yu Wang, Fengjuan Gao, Linzhang Wang, and Ke Wang. Learning semantic program embeddings with graph
interval neural network, 2020. URL https://arxiv.org/abs/2005.09997.

[38] Martin White, Michele Tufano, Christopher Vendome, and Denys Poshyvanyk. Deep learning code fragments for
code clone detection. In IEEE/ACM International Conference on Automated Software Engineering (ASE), pages
87–98, 2016.

[39] Fabian Yamaguchi, Nico Golde, Daniel Arp, and Konrad Rieck. Modeling and discovering vulnerabilities
with code property graphs. In 2014 IEEE Symposium on Security and Privacy, pages 590–604, 2014. doi:
10.1109/SP.2014.44.

[40] Pengcheng Yin and Graham Neubig. Tranx: A transition-based neural abstract syntax parser for semantic parsing
and code generation, 2018. URL https://arxiv.org/abs/1810.02720.

11

https://arxiv.org/abs/1912.05097
https://arxiv.org/abs/2105.14038
https://arxiv.org/abs/2103.00270
https://arxiv.org/abs/1511.05493
https://arxiv.org/abs/1912.02972
https://openreview.net/forum?id=WQc075jmBmf
https://arxiv.org/abs/2105.12655
https://arxiv.org/abs/1704.07535
https://arxiv.org/abs/2106.10918
https://arxiv.org/abs/1911.01205
https://arxiv.org/abs/1911.01205
https://arxiv.org/abs/1408.4523
https://proceedings.neurips.cc/paper/2021/file/c5aa65949d20f6b20e1a922c13d974e7-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/c5aa65949d20f6b20e1a922c13d974e7-Paper.pdf
https://arxiv.org/abs/2104.00196
https://arxiv.org/abs/2103.09499
https://arxiv.org/abs/2005.09997
https://arxiv.org/abs/1810.02720

A Library for Representing Python Programs as Graphs for Machine Learning

[41] Hao Yu, Wing Lam, Long Chen, Ge Li, Tao Xie, and Qianxiang Wang. Neural detection of semantic code
clones via tree-based convolution. In 2019 IEEE/ACM 27th International Conference on Program Comprehension
(ICPC), pages 70–80, 2019. doi: 10.1109/ICPC.2019.00021.

[42] Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, Kaixuan Wang, and Xudong Liu. A novel neural source
code representation based on abstract syntax tree. In 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE), pages 783–794, 2019. doi: 10.1109/ICSE.2019.00086.

[43] Kechi Zhang, Wenhan Wang, Huangzhao Zhang, Ge Li, and Zhi Jin. Learning to represent programs with
heterogeneous graphs, 2020. URL https://arxiv.org/abs/2012.04188.

[44] Yaqin Zhou, Shangqing Liu, Jingkai Siow, Xiaoning Du, and Yang Liu. Devign: Effective vulnerabil-
ity identification by learning comprehensive program semantics via graph neural networks, 2019. URL
https://arxiv.org/abs/1909.03496.

[45] Daniel Zügner, Tobias Kirschstein, Michele Catasta, Jure Leskovec, and Stephan Günnemann. Language-agnostic
representation learning of source code from structure and context, 2021. URL https://arxiv.org/abs/2103.
11318.

12

https://arxiv.org/abs/2012.04188
https://arxiv.org/abs/1909.03496
https://arxiv.org/abs/2103.11318
https://arxiv.org/abs/2103.11318

A Library for Representing Python Programs as Graphs for Machine Learning

A Program Graph Visualizations

Figure 6: Program graph for Program #1 from Table 2.

13

A Library for Representing Python Programs as Graphs for Machine Learning

Figure 7: Program graph for Program #2 from Table 2.

14

A Library for Representing Python Programs as Graphs for Machine Learning

Figure 8: Program graph for Program #3 from Table 2.

15

A Library for Representing Python Programs as Graphs for Machine Learning

Figure 9: Program graph for Program #4 from Table 2.

16

A Library for Representing Python Programs as Graphs for Machine Learning

Figure 10: Program graph for Program #5 from Table 2.

17

A Library for Representing Python Programs as Graphs for Machine Learning

Figure 11: Program graph for Program #6 from Table 2.

18

A Library for Representing Python Programs as Graphs for Machine Learning

Figure 12: Program graph for Program #7 from Table 2.

19

A Library for Representing Python Programs as Graphs for Machine Learning

Figure 13: Program graph for Program #8 from Table 2.

20

A Library for Representing Python Programs as Graphs for Machine Learning

B Histograms of Program Graph Metrics

Figure 14: Histograms for various metrics of program graphs across the Project CodeNet dataset. Red bars include the
program graphs for which the metric falls outside the range covered by the other bars.

21

	1 Introduction
	2 Background
	3 Capabilities, Possible Extensions, and Limitations
	3.1 Capabilities
	3.1.1 Control-Flow Graphs
	3.1.2 Data-Flow Analyses
	3.1.3 Composite Program Graphs
	3.1.4 Cyclomatic Complexity

	3.2 Possible Extensions
	3.2.1 Alternative Composite Program Graphs
	3.2.2 Inter-procedural Control-Flow Graphs
	3.2.3 Data-Flow Graphs
	3.2.4 Span-Mapped Graphs
	3.2.5 Additional Data-Flow Analyses

	3.3 Limitations

	4 Use cases
	4.1 Graph Representations as Model Inputs
	4.2 Program Graphs as Targets

	5 Case Study: Project CodeNet
	6 Discussion
	A Program Graph Visualizations
	B Histograms of Program Graph Metrics

