Get the best insights in crypto delivered directly to your inbox. Subscribe to our newsletter below.

mail icon

Delegated Proof of Stake: Features and Tradeoffs

Kyle Samani
Tushar Jain
March 2, 2018 | 20 Minute Read

A short overview is presented below. To download our full 19-page report, please click the PDF link.

Intro

Distributed ledgers don’t easily scale. That fact has become readily apparent in the last few years as Bitcoin, Ethereum, and others have faced serious challenges as they attempt to increase the speed and throughput of their platforms.

This problem can be best understood as a scalability trilemma (this idea was first formalized by Vitalik Buterin and Trent McConaghy). The scalability trilemma posits that any blockchain system in which every node validates every transaction can have only two of three potential properties: decentralization of block production (DBP), safety, and scalability. These properties can be defined as follows:

  • DBP can be quantified as the number of block producers.
  • Safety can be quantified as the cost of mounting a Byzantine attack that affects liveness or transaction ordering. Note that safety does not refer to the integrity of cryptographic signatures, or the ability of a 3rd party to derive a set of private keys from public keys.
  • Scalability can be quantified as the number of transactions per unit of time that the system can process.

While projects like Ethereum, Dfinity, Polkadot, and Kadena are attempting to solve the scalability trilemma via sharding, alternative consensus schemes, and other techniques, we don’t yet have a live platform that has solved this trilemma. Even if one of these projects does manage to solve the scalability trilemma, the market may not care. It is entirely possible that users are willing to accept tradeoffs in decentralization of block production or safety in the name of better performance and easier user experience for certain use cases.

Decentralization is valuable to ensure that any given party cannot alter the database. More decentralization means it is harder to collude to alter the database. There are different levels of protection which are necessary for different use cases. Bitcoin, being censorship-resistant money, is designed for sovereign-grade protection; it is designed to withstand an attack by a large nation-state. However this isn’t necessary for most decentralized applications (dApps). These dApps need platform-grade protection; global, neutral databases uncontrolled by any one party.

Delegated Proof of Stake (DPoS) concentrates block production in the hands of just a few, known, semi-trusted entities in order to achieve orders of magnitude more scalability than proof-of-work (PoW) or other proof-of-stake (PoS) blockchains. In this analysis, we’ll examine the features and tradeoffs of DPoS.

Delegated Proof of Stake

Delegated proof of stake (DPoS) is a consensus algorithm invented by Dan Larimer in 2013. DPoS was originally invented to power BitShares, Larimer’s first blockchain project. He refined it in his second project, Steem, and is refining it further in EOS, which he’s been working on for about one year. While Larimer invented DPoS and continues to evolve the algorithm, several other projects have adopted DPoS and made changes.

In DPoS, those who hold the network token are able to cast votes to elect block producers; votes are weighted by the voter’s stake, and the block producer candidates that receive the most votes are those who produce blocks. Users can also delegate (“proxy”) their voting power to another user who can vote on their behalf. DPoS is a liquid, representative democracy with token holder suffrage. DPoS can also be thought of as a formalized, digital version of a traditional organizational hierarchy that operates in a completely transparent way. While there are problems with both democracy and corporate governance that are beyond the scope of this paper, one compelling features of DPoS is that the open-source nature of these protocols means that users can fork if they disagree with the majority. The same cannot be said of democracies, corporations, and other organizational structures. DPoS adopts ideas from many traditional governance models, but is ultimately far more flexible and transparent.

Block producers can be voted in or out at any time, so the threat of loss of income and reputation is one of the major incentives against bad behavior. Additionally, slashing conditions can be implemented in DPoS rather trivially. Most traditional PoS implementations allow users to produce blocks proportional to their stake in the network. DPoS allows users to cast votes proportional to their stake to decide who produces blocks. Block producers themselves do not necessarily need to have a large stake, but they must compete to receive votes from users.

DPoS can power entire blockchains, or it can be used as a consensus algorithm for child chains, sidechains, private blockchains, and more. DPoS could be used to power consensus within Ethereum Plasma chains, and DPoS bears many similarities to the “Proof of Authority” consensus mechanism formalized by Parity. It could also be a solution for application-specific chains like those in Cosmos zones.

DPoS recognizes that decentralization has a cost—both economically and in terms of performance—and it opts for semi-centralization in exchange for scalability. If DPoS systems can still offer the requisite levels of censorship resistance, permissionless-ness, and trustlessness that decentralized databases require, then DPoS is better for a huge range of decentralized applications. For certain use cases—absolutely censorship-resistant digital gold, peer-to-peer digital money, etc., a tradeoff in favor of decentralization at the expense of performance may make sense. For the vast majority of applications, scalability is far more pragmatic.

In this analysis, we’ll examine DPoS in-depth, looking at the features, tradeoffs, attack vectors, and use cases. Download the full report here.

Disclosure: Unless otherwise indicated, the views expressed in this post are solely those of the author(s) in their individual capacity and are not the views of Multicoin Capital Management, LLC or its affiliates (together with its affiliates, “Multicoin”). Certain information contained herein may have been obtained from third-party sources, including from portfolio companies of funds managed by Multicoin. Multicoin believes that the information provided is reliable but has not independently verified the non-material information and makes no representations about the enduring accuracy of the information or its appropriateness for a given situation. This post may contain links to third-party websites (“External Websites”). The existence of any such link does not constitute an endorsement of such websites, the content of the websites, or the operators of the websites. These links are provided solely as a convenience to you and not as an endorsement by us of the content on such External Websites. The content of such External Websites is developed and provided by others and Multicoin takes no responsibility for any content therein. Charts and graphs provided within are for informational purposes solely and should not be relied upon when making any investment decision. Any projections, estimates, forecasts, targets, prospects, and/or opinions expressed in this blog are subject to change without notice and may differ or be contrary to opinions expressed by others.

The content is provided for informational purposes only, and should not be relied upon as the basis for an investment decision, and is not, and should not be assumed to be, complete. The contents herein are not to be construed as legal, business, or tax advice. You should consult your own advisors for those matters. References to any securities or digital assets are for illustrative purposes only, and do not constitute an investment recommendation or offer to provide investment advisory services. Any investments or portfolio companies mentioned, referred to, or described are not representative of all investments in vehicles managed by Multicoin, and there can be no assurance that the investments will be profitable or that other investments made in the future will have similar characteristics or results. A list of investments made by funds managed by Multicoin is available here: https://multicoin.capital/portfolio/. Excluded from this list are investments that have not yet been announced (1) for strategic reasons (e.g., undisclosed positions in publicly traded digital assets) or (2) due to coordination with the development team or issuer on the timing and nature of public disclosure. * This blog does not constitute investment advice or an offer to sell or a solicitation of an offer to purchase any limited partner interests in any investment vehicle managed by Multicoin. An offer or solicitation of an investment in any Multicoin investment vehicle will only be made pursuant to an offering memorandum, limited partnership agreement and subscription documents, and only the information in such documents should be relied upon when making a decision to invest.*

Past performance does not guarantee future results. There can be no guarantee that any Multicoin investment vehicle’s investment objectives will be achieved, and the investment results may vary substantially from year to year or even from month to month. As a result, an investor could lose all or a substantial amount of its investment. Investments or products referenced in this blog may not be suitable for you or any other party.

Multicoin has established, maintains and enforces written policies and procedures reasonably designed to identify and effectively manage conflicts of interest related to its investment activities. For more important disclosures, please see the Disclosures and Terms of Use available at https://multicoin.capital/disclosures and https://multicoin.capital/terms.