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ABSTRACT
CloudKit is Apple’s cloud backend service and application devel-
opment framework that provides strongly-consistent storage for struc-
tured data and makes it easy to synchronize data across user devices
or share it among multiple users. Launched more than 3 years ago,
CloudKit forms the foundation for more than 50 Apple apps, in-
cluding many of our most important and popular applications such
as Photos, iCloud Drive, Notes, Keynote, and News, as well as
many third-party apps. To deliver this at large scale, CloudKit ex-
plicitly leverages multi-tenancy at the application level as well as at
the user level to guide efficient data placement and distribution. By
using CloudKit application developers are free to focus on deliver-
ing the application front-end and logic while relying on CloudKit
for scale, consistency, durability and security. CloudKit manages
petabytes of data and handles hundreds of millions of users around
the world on a daily basis.
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1. INTRODUCTION
Many users have multiple devices, including phones, tablets,

smart TVs, and wearable computers. Users expect to seamlessly
switch from one device to another and have their latest content
available. Many mobile applications (apps) support content shar-
ing, collaboration, and always up-to-date access from any device.

Developing such apps is challenging. They must interact effi-
ciently with backend servers, maintain a local cache for portions
of the data and sync mutations between devices. Furthermore, suc-
cessful mobile apps need to support many millions of users. This
requires a scalable and highly-available backend. At the same time,
to facilitate seamless cross-device experience, the backend has to
provide strong consistency and durability. Furthermore, it has to
provide adequate support for mobile clients including quickly bring-
ing a client up-to-speed when it regains connectivity, selective con-
tent filtering, notifications (to avoid polling), and more.
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In an effort to accelerate and optimize the development of inter-
nal apps at Apple, we developed CloudKit: a platform that makes
mobile app development simple and scalable. Launched more than
3 years ago, CloudKit [11] supports more than 50 Apple apps (as
of Nov. 2017), including many of our most popular applications
(e.g., iCloud Drive, Notes, Photos, Keynote, News, Backup, social
gaming and many others), many more external apps and hundreds
of millions of users on a daily basis (in Feb 2016, the number of
iCloud users was 782 million [31]). Figure 1 shows the normal-
ized number of Apple (first-party) and externally developed (third-
party) apps adopting CloudKit since 2014. CloudKit allows rapidly
developing the application logic, and obviates the need to solve
boilerplate infrastructure problems. Many first-party apps don’t
have a dedicated backend team, relying completely on CloudKit.

Figure 1: CloudKit adoption growth: number of apps using
CloudKit normalized to their number as of November 2017.

In order to handle the combined scale of its client apps, Cloud-
Kit employs a unique approach that leverages multi-tenancy along
two dimensions. First, each app operates in an isolated logical
space called a CloudKit container. Within a container an appli-
cation developer manages the app’s schema, which can support
a large number of record types and complex relationships. Sec-
ond, within each container CloudKit uniquely divides the data-
space into many private databases that manage user-scoped data
and one public database for common application data. A database
instance is a self-contained unit that inherits the schema definition
from the logical container and manages it’s own data and indices.
Each private database belongs to exactly one container and one
user, and provides strong synchronization and serialization capa-
bilities within the database. CloudKit backend is therefore free to
distribute and balance the hundreds of millions of self-contained
databases across the available infrastructure. Another advantage
of this approach is that individual user requests target exactly one
database (this user’s private or the container’s public database) al-
lowing for localized execution and minimal traffic between a client
device and the backend. For multi-user sharing, data is always
owned by one of the users, whose private database maintains an
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authoritative copy of the data. Sharing requires distributed coordi-
nation involving multiple databases.

A distinguishing feature of CloudKit is its support for schema
management and evolution. CloudKit provides each container with
separate sandbox and production environments, allowing develop-
ers to experiment with schema changes and deploy them to produc-
tion with the push of a button using a dashboard. In the sandbox
environment, CloudKit facilitates rapid app development by auto-
matically inferring a schema when data is saved. In the production
environment, CloudKit enforces the schema and allows strictly ad-
ditive schema modifications, that are automatically propagated and
inherited by each database instance of that container. This stands
in contrast to other mobile backend solutions [17, 22, 24, 25, 28]
which take a NoSQL approach: the app is free to write any data
(e.g., JSON files) and schema management is left to the app de-
veloper. This is a daunting task since inevitably, schema changes
need to be made, while avoiding forward and backward compati-
bility issues with data already stored and clients executing different
versions of application code.

Applications usually cache data locally on devices and need to
keep it in-sync with data stored by the backend, as it is modified by
other devices and users. CloudKit provides change-tracking and a
sync interface, used to keep their local state up-to-date (change-
tracking can be selectively enabled for parts of the data-space).
CloudKit also supports selective data filtering by exposing a flex-
ible query interface, including full-text queries. Complementing
both interfaces are subscriptions (including continuous queries) and
push notifications which obviate polling and the need to configure
or interact directly with push notification services.

In summary, this work makes the following contributions:

• CloudKit’s unique data model and organization has proven
useful for a wide range of applications, by serving as the
backbone to some of the world’s largest datasets.

• Through its separation of development and production envi-
ronments, CloudKit manages and enforces application schema,
without sacrificing rapid app development.

• CloudKit’s change-tracking mechanism provides a power-
ful abstraction, leveraged by applications for both data and
meta-data cross-device synchronization.

• To the best of our knowledge, this paper is the first to pro-
vide details of a production mobile backend system, that ap-
proaches the efficiency and synchronization problem with
such explicit tools or that’s operating at such scale.

This paper is organized as follows. Sections 2 and 3 describe Cloud-
Kit’s data model, APIs and semantics. Section 4 describes common
use-cases. Sync is described in Section 5. Section 6 explains multi-
user sharing. Section 7 details the query interface, subscriptions
and notifications. Section 8 describes schema management. Re-
lated work appears in Section 9. Section 10 includes production
experiences and evaluation. Section 11 concludes the paper.

2. CloudKit DATA MODEL
CloudKit’s novel data model, described in this section, was de-

signed with the mobile use-case in mind. CloudKit faces a dual
multi-tenancy challenge: it serves a very large number of apps,
and hundreds of millions of users. CloudKit’s data model rep-
resents both explicitly – each app has a dedicated container, and
each user a dedicated database within the container. A key obser-
vation that motivates our design is that many apps have data which

is accessible across users (e.g. news articles, maps, music), while
other data is private (e.g., a user’s settings, preferences, photos,
docs, messages). CloudKit stores this data in designated public
and private databases, respectively. The storage requirements for
these two types of data are very different and hence the private
and public databases have different capabilities. For example, pri-
vate databases support stronger security and consistency semantics,
change-tracking, sharing data with specific users, and more, while
public databases are designed to be more scalable and serve many
users concurrently. Unlike in traditional databases, all databases
within one container share a single schema, which makes it easy to
manage and evolve an app’s schema. At the same time, the private
databases of different users do not have to reside in the same physi-
cal location, and in fact are often moved to improve load-balancing,
access locality, etc. In our experience, sharding on a natural bound-
ary of a user’s data allows for almost unlimited scalability.

The separation into private and public databases aids with se-
curity, privacy, and access control: Data stored in a user’s private
database is owned by the user and can only be accessed by client
devices authenticated as the owner (or as another user with whom
the owner shares the data through CloudKit), but not by other users
of the app (or the app developer). Authentication is performed by
other iCloud services, while access control is enforced by Cloud-
Kit. For many apps, a client device encrypts data prior to storing it
in the private database, and only the owner’s devices (or those with
whom he shares the data) can decrypt it [9, 23].

Usage of the private database is counted against the user’s quota;
usage of the public database is billed to the app developer. Since
most data resides in private databases, the vast majority of storage
and processing costs are free for the app developers.

In the remainder of the section, we summarize the different con-
structs provided by CloudKit (see Figure 2 for illustration):

Containers. Usually, the data of one app is encapsulated in a
single container (this includes information about the users – each
user may expose different information to different apps). Data can
be shared across applications (not a common use-case) by using
shared containers. Containers are created by the developer using
Xcode and managed via the CloudKit dashboard [12].

For privacy reasons, CloudKit makes sure that it is impossible for
an application to correlate users across containers (of other apps),
by having container-specific user identifiers. CloudKit converts
such identifiers to an unique internal id for each user.

Databases. Each container is logically divided into three types
of databases: a single public database, n private and n shared
databases where n is the number of app users with an iCloud ac-
count. These databases are created by CloudKit automatically. Data
stored in the public database is, by default, visible to all users of the
app (only authenticated users can store data; security roles are used
for access control). Each user has a dedicated private database,
and no other user can store or access data in that database unless
explicit sharing relationships are created. A shared database is a
user’s “window” into the private databases of other users.

Records. Records are the basic unit of storage. Each record
is a dictionary of key-value pairs, called record fields. Fields can
contain simple value types (e.g., strings, numbers, dates) or more
complex types (e.g., locations, references to other records, and as-
sets). A field can also contain a list of values of a certain type.
Reference fields represent relationships between records while as-
sets reference data stored externally (e.g., when a photo is uploaded
by a user, only its metadata and URL are stored in CloudKit). A
separate sub-system manages the creation and garbage collection of
assets and generates asset references. CloudKit supports encrypted
field values, available in the private database.
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Folder … (reference)

Groceries Record

Figure 2: CloudKit data organization. On the right - an example of a record created by a groceries app.

Record Zones. Zones are a useful way to organize records into
logical groups and enable an application to selectively sync sub-
sets of data across devices. Each record belongs to one zone; zone
name is a logical component of a record’s full identifier. The public
database has a single default zone. A private database contains a de-
fault zone but may in addition contain custom zones. Default zones
provide a minimal set of features and are adequate for prototyp-
ing. Apps will generally evolve to use custom zones with additional
capabilities. For example, custom zones support change-tracking,
transactional multi-record batches and records may reference other
records in the zone. Shared databases have custom zones, but no
default zone (sharing is another feature specific to custom zones).

Environments and Schema. CloudKit provides strong schema
management and enforcement, while at the same time enabling
rapid app development. App developers define a schema contain-
ing record types, where each type consists of the identifiers and
types of fields in the record. The schema is defined per-container –
records of any type can be stored in any of the databases and zones
in the container. Unlike traditional relational databases, where all
rows in a table follow the same schema, the records of a zone can
be of diverse record types. CloudKit provides separate develop-
ment (sandbox) and production app environments. The develop-
ment environment (available to app developers) is more flexible:
the schema is inferred automatically when records are stored in the
container. When the developer is ready to distribute the app, she
uses the dashboard to migrate the development schema to produc-
tion (this does not migrate the actual records). After the app has
been deployed, the schema can still be modified in the develop-
ment environment and migrated again to production (at this point,
changes must be additive, e.g., fields and record-types can be added
but not removed, though secondary indices, if defined on a field,
can be removed). CloudKit propagates the app schema to all its
partitions and enforces it on client operations. A detailed descrip-
tion of schema management appears in Section 8.

3. API, SEMANTICS, ARCHITECTURE
CloudKit APIs. CloudKit provides a rich set of CRUD APIs al-

lowing clients to create, update, delete and fetch records and zones,
list zones, upload and reference assets, get a list of changed zones
in a database or changed records in a zone, listing users1, sharing
records, queries, subscriptions, notifications, and more. CloudKi-
texposes client-side libraries in Swift, Objective-C and JavaScript
to support mobile and web developers. An exhaustive reference
of server and client APIs is beyond the scope of this paper. APIs
available to third-party developers can be found online [13, 14].

Dashboard. CloudKit provides a dashboard [12] where devel-
opers can view and manage app data, define secondary indices
1Each user determines what he shares with the app and other users.

on record fields, view live server log events, visualizations, usage
statistics (including errors), and more. The dashboard can also act
as a web-client and issue requests, which is useful for debugging.
These tools are provided for both the development and production
environments, and the developer has additional options for resetting
the development environment (erasing all data in that environment
and making the schema match the current production schema, if
any) and for deploying the schema to production (which modifies
production schema to match the development schema).

Architecture overview. CloudKit supports three different inter-
faces, wrapping the same set of APIs (see Figure 3): a REST-like
web interface (for web applications), gRPC [21] (mainly for other
backend services using CloudKit) and a custom interface over TCP,
used by mobile client apps through a client-side library and a dae-
mon installed on devices. Usually, many applications on each de-
vice use CloudKit, and the daemon consolidates and manages all
communication with the backend, as well as provides convenience
APIs. With both gRPC and our client daemon, requests to the back-
end are encoded as Protocol Buffers [29].

Figure 3: CloudKit architecture.

Server extensions are used for several major first-party apps, such
as iCloud Drive, Photos and Backup and implement application-
specific logic (e.g., conflict-resolution). Most apps using Cloud-
Kit, including many first-party apps, don’t have custom server-side
logic. CloudKit uses Apache Cassandra [5] as the underlying stor-
age, and Solr [6] for indexing record fields queriable by users. Ap-
ple’s Push-Notification Service [8] is used to notify users (queries,
subscriptions and notifications are discussed Section 7). Asyn-
chronous tasks are queued using a queue management system and
processed by maintenance jobs. Examples include any necessary
Solr index updates when a record is written, garbage-collection of
expired or deleted records, and future action requests (e.g., when a
user requests to delete his iCloud Photo Library, a grace period of
30 days is given, during which he can change his mind).
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Data placement. Data is sharded into multiple CloudKit parti-
tions, which constitute distinct failure domains. Each user is as-
signed to a single partition (partitions are replicated globally for
high availability). Within each partition, there is a fixed number
of stateless CloudKit JVM instances for each interface type (web,
gRPC or device). Sharding by user makes this simple approach
work reasonably well, though we are in the process of moving to
a more dynamic deployment. We periodically migrate users from
one CloudKit partition to another to improve load-balancing and
access locality; currently, such migrations are infrequent and done
in bulk for many users.

Each CloudKit partition has a dedicated Cassandra cluster, stor-
ing multiple Cassandra partitions. Within a Cassandra partition,
Cassandra provides light-weight transactions, implemented using
Paxos [38] and exposed as a compare-and-set (CAS) functional-
ity [26]. CloudKit uses CAS to implement conditional updates,
which provide a way to achieve lock-free synchronization of con-
current updates. The granularity of synchronization is different for
custom and default zones, as we explain next.

Each custom zone is assigned to one Cassandra partition. This
is done in order to leverage conditional and multi-key atomic up-
dates provided by Cassandra within a partition2. Specifically, each
custom zone has an update counter in Cassandra, and each update
(to one or more records in the zone) additionally attempts to up-
date this counter using CAS, which succeeds only if it was not
concurrently updated by a different operation. This serializes all
updates to the zone and allows supporting multi-record atomic op-
eration batches. Although providing strong semantics, the assign-
ment of a custom zone to a single Cassandra partition limits the
size of the zone and does not utilize the whole Cassandra cluster.
Default zones trade-off stronger semantics for scalability. They are
sharded across multiple Cassandra partitions, which allows them
to grow significantly larger than custom zones, but only provide
single-record linearizable operations since Cassandra does not sup-
port cross-partition transactions. By default, the private database
default zone is sharded into 10 Cassandra partitions while the pub-
lic default zone is sharded into 10 thousand partition (some tenants,
like Apple News, are sharded into many millions of partitions).

Intuitively, a private database is accessed by devices of a single
user (or a small number of share participants), which are unlikely to
request updates at the exact same time. Hence, zone-level synchro-
nization where only one of the devices can make progress and the
others retry is sufficient (we measure aborts due to CAS contention
in Section 10.2). A public database, on the other hand, is accessed
concurrently by many users and it is impractical to only allow a
single client to make progress. The default zone (the only zone in
the public database) allows many users to access data concurrently.

Read and update semantics. As already mentioned, all reads
and updates of single records are atomic (linearizable) and custom
zones further support multi-record atomic batches (including both
reads and updates). Record reads optionally allow specifying the
subset of record fields to retrieve. Record updates have one of three
possible modes: save-if-unchanged, save-changed-keys and save-
all-keys. With save-if-unchanged, an update is performed only if
the record hasn’t changed at the server since the last time it was
fetched by this client (if the record wasn’t previously fetched, the
save succeeds only if the record does not exist). The check is per-
formed using CAS on a version stored in the record, incremented
by the server with every update to the record, and sent in operations
and responses. The other update modes merge fields specified by
the client and fields stored at the server, replacing updated fields.
2Cassandra’s query language providing these features [15] was
heavily influenced by CloudKit’s requirements.

With save-changed-keys, the client sends only fields modified since
the record was fetched, while save-all-keys sends all fields.

Note that since save-changed-keys updates only a subset of the
fields, it is possible that the result is not what the client expected:
other fields may have been updated concurrently by other clients.
Even with save-all-keys, only fields that are sent by the client are
updated. This is done to help with app versioning. It is possible
that a client running a newer version of the app stores fields that are
not known to old clients, and we want to prevent old clients from
implicitly deleting such fields (explicit deletes are allowed).

While save-if-unchanged is the “safest” update mode, it provides
weaker progress in the face of contention, guaranteeing that the
update of one of the clients succeeds (i.e., lock-free / non-blocking
progress). In cases of highly contended records it may be more
desirable to merge fields in order for all clients to make progress
(i.e., wait-freedom [35]). In that case, the client should make sure
that the result of merging the fields is consistent (e.g., by sending
some additional unchanged fields).

Reference semantics. Reference fields create a stronger rela-
tionship between records than just saving the identifier of a record
as a string. Two examples are the owning and the validating ref-
erences. With an owning reference, the target (referenced) record
becomes the owner of the source record. Deleting the target record
deletes all its source records, cascading further if these records
themselves “own” other records. If a record contains two or more
owning references, the record is deleted when any of its owners is
deleted. A validating reference ensures that its target exists as long
as the source record exists; creating the reference is only allowed if
the target record exists, and deleting the target is not permitted as
long as it’s referenced.

Secondary indices. The dashboard allows developers to create
indices on record fields, and CloudKit supports queries on indexed
fields (see Section 7). Queries on record identifiers are backed by
Cassandra and are therefore atomic; all other queries are backed by
Apache Solr [6] and are eventually consistent. Some features lever-
age a secondary indexing mechanism that we developed in Cassan-
dra, that provides filtering and ordering while guaranteeing atom-
icity. Such secondary indices consist of regular Cassandra records,
whose key is the secondary key and value is a list of record ids
with that key (in addition to other information, depending on the
index). The records are split, if needed, to keep the value lists
relatively short. These records are stored in the same Cassandra
partition and updated transactionally with the data using Cassan-
dra’s multi-record atomic updates and CAS. Scanning the index
is done using Cassandra’s range scan. One example is the imple-
mentation of reference fields, where a secondary index maps each
record identifier to the list of records that reference it. Another ex-
ample is the implementation of short-lived records – an application
can set (or change) a TTL on a record, CloudKit indexes records
by expiration time and a maintenance job garbage-collects expired
records by querying the index. Applications can configure whether
expired records that were not yet garbage-collected are visible to
users. Change-tracking, described in Section 5, is implemented us-
ing a secondary index on the value of the zone’s update counter.

3.1 Conflict Resolution
A frequent use-pattern is one where a device comes online and

syncs down new or changed records in a zone, bringing its local
database up-to-date by incorporating the received changes. The
device may also have local pending changes, not yet uploaded to
CloudKit. Some of them may conflict with updates that happened
while the device was offline. In this case, the app would detect and
fix conflicting records when it syncs down changes. Then, pend-
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ing changes are uploaded to CloudKit. If concurrent updates are
made by other devices, and the default save-if-unchanged mode is
used, CloudKit detects the conflict based on record-version mis-
match and an error is returned.

CloudKit does not offer a general conflict resolution functional-
ity. The app is expected to handle the error, resolve any conflicts,
and attempt to save the record again, if needed. CloudKit provides
the app with three copies of the conflicting record to assist with
comparing and merging the changes (commonly referred to as a
three-way merge): (1) client record – a copy of the record the client
attempted to save, (2) server record – a copy of the record as it
currently exists on the server, and (3) ancestor record – a copy of
the record fetched by the client, before any of the pending changes
were applied. When a conflict occurs, the app should merge all
changes onto the server record (this record has the up-to-date record
version) and attempt to save that record.

Clients use various methods to resolve conflicts. Some use the
simple “last writer wins” method, essentially forcing the update
upon conflict by conditioning it on the newly received record ver-
sion. Others use a deterministic method, such as “smaller device id
wins”. Text-editing apps using CloudKit often employ techniques
such as Operational Transformation and CRDTs [42]. It is impor-
tant to note that while CloudKit only detects update conflicts on
individual records, app-level conflicts may span multiple records.
It is up to the app to detect app-specific constraint violations and
correct any illegal state by performing additional updates.

In many cases, client-side conflict resolution is preferable. For
example, if record data (such as document text) is encrypted only
an authorized device (and not the backend) can perform a content-
based merge. In cases when the conflict cannot be resolved, end-
user intervention may be required. In this case, an app would usu-
ally show an error message or pop-up a dialog UI and present the
user with several options to resolve the conflict.

Nevertheless, there are several advantages for supporting server-
side conflict resolution. First, resolving conflicts on the server re-
duces client-server communication. Second, different clients may
be running different versions of the app software and arriving at a
consistent client-side conflict resolution may be challenging. Fi-
nally, server-side conflict-resolution allows us to update the resolu-
tion logic without requiring a client software update.

For these reasons, CloudKit allows several first-party apps to run
their conflict-resolution code in server extensions. This allows the
app more flexibility to specify what other records and information
it needs to resolve the error. In some cases, iterative resolution is
performed by the extension. For example, in iCloud Drive when a
client attempts to store a record representing a file and the file name
conflicts with an existing file, the extension may attempt to rename
the new file but in doing so may create a conflict with a different
file, requiring additional resolution rounds. To facilitate server-side
resolution, CloudKit stores conflicted records and server extensions
are expected to clean-up such records after conflict resolution.

4. CloudKit USE PATTERNS
We identify five main use patterns for CloudKit:
Publish-Subscribe. In these apps, the backend or several users

produce data, while others consume and query it. One example is
Apple News – articles are written to CloudKit’s public database and
clients register query subscriptions based on their preferred topics
and news outlets (in this case, the database is backed by a glob-
ally distributed Cassandra cluster). News uses the private database
to save each user’s preferences and sync them across its devices.
Multiple apps use the public database to allow querying public in-
formation such as transportation time-tables and routes. Finally,

some apps use it as a space where users can share content with
each other, often encrypting it and using security roles for access
control. Such apps could benefit from CloudKit’s sharing features.

Cross-Device Sync. This is the prevalent use-case for Cloud-
Kit, leveraging the change-tracking capabilities of custom zones.
For example, several first-party document sharing apps represent
documents and folders as records in a user’s private database. Doc-
ument text is represented as a field value or as an asset referenced
from the record. The content is kept in-sync on all user devices that
can jointly edit, subscribe to change notifications and receive state
updates. Another example is iCloud Photo Library, which repre-
sents photo metadata as records in a user’s private database, while
the photo itself (and derivatives, such as thumbnails) are assets ref-
erenced from the record. A much simpler example is an RSS-like
app where users consume a feed of events, and CloudKit is used to
share the feed cursor across the user’s devices. Finally, a recent ex-
ample is an Apple app that keeps the list of paired bluetooth devices
(e.g., AirPods, mice) in-sync, so that a user can pair the device once
(e.g., with his iPhone) and have it automatically pair with the other
devices (such as his iPad and MacBook).

Sharing and Collaboration. A relatively recent feature, sharing
was much requested by CloudKit users. It extends cross-device
sync to content sharing among multiple users. It’s used by most of
Apple’s productivity apps (e.g., Keynote, Pages, Numbers, Notes)
for sharing documents, photos, presentations and other content. It
is also used by our mobile gaming platform to support multi-player
games. Another example is a third-party app that allows family
members to jointly create and edit their genealogy tree.

Bounded Queue. These types of apps usually produce a stream
of events, store a sliding-window of the most recent events in Cloud-
Kit and keep it in-sync across devices. This window is usually
bounded by the number of events and/or by the age of the oldest
event. Examples include apps keeping the recent call history or
the most recently visited websites in Safari in-sync across devices.
Other apps queue objects placed in a “trash bin”, allowing the user
to un-delete the object until the record expires. These apps usually
set a TTL on records stored in CloudKit. Expired records are inac-
cessible and garbage-collected by CloudKit’s maintenance jobs.

Cloud Storage. Some apps use CloudKit as a transactional key-
value store, but don’t (normally) sync stored data across devices.
An example is Apple’s mobile backup app. This is a write-heavy
app, making use of two zones in each user’s private database: the
default zone, where file records are stored and a custom zone, where
snapshot information is stored. There are usually tens of thousands
of (immutable) file records per user and the default zone provides
a sufficient level of consistency for such records, while massively
sharding them for scalability. The snapshots consist of a multi-level
directory structure, akin to i-nodes, that reference file records and
can be used to re-construct a consistent snapshot of the mobile de-
vice. This information is relatively small but requires cross-record
atomic transactions, provided by a custom zone.

5. CHANGE-TRACKING (SYNC)
CloudKit is most-frequently used to synchronize app data on

multiple user devices (e.g., laptops, tablets or mobile phones). When
one device generates new data, it is stored both on the device and
in CloudKit, and propagated to all devices through CloudKit. Sync
is a core CloudKit functionality enabling this synchronization.

The sync protocol must fulfill the following requirements: (1) it
is initiated by a client, (2) should be efficient w.r.t. network traffic,
(3) be able to sync down a part of the data at a time, where the size
of each batch is determined by the client (up to certain limits), (4)
due to the intermittent connectivity of mobile clients, syncing may
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be interrupted at any time and should resume when the client comes
back online. Finally, (5) the client should sync to a consistent state,
i.e., a snapshot of the server state at some point in time.

5.1 Forward Sync
To support sync, each custom zone maintains a log of record

changes. Specifically, every update to a zone is assigned a mono-
tonically increasing version (achieved by using Cassandra’s CAS)
and each custom zone implements a sync index, mapping versions
to record identifiers. When a record is modified, the index is up-
dated transactionally, adding an entry for the newly assigned ver-
sion and deleting the previous index entry for the record. A sync
operation performs a forward scan of the sync index.

Deleting the previous index entry is done to minimize network
traffic – we avoid returning record versions that are known to be
stale. This decision directly impacts the last goal, since a consistent
state is reached only when all changes in the log are synced down.
This choice is acceptable for most use-cases. When it is not, a
snapshot sync (see Section 5.3) may be more appropriate.

As part of a sync request, the client specifies a zone identifier,
a maximum number of records to return, and a continuation. The
latter is a cursor into the sync index, and allows resuming an in-
complete sync. Initially, no continuation is specified which causes
an index scan starting from the start of the log. An updated contin-
uation is sent back to the client in the sync response, and returned
by the client in a subsequent sync request. For the client, a contin-
uation is an opaque sequence of bytes. This allows us to change its
implementation without changing the client APIs. Finally, the sync
response indicates whether or not the sync is complete.

When a record is deleted, it is replaced with a tombstone and the
sync index is updated. The tombstone contains the version assigned
at record creation. When a sync operation encounters a tombstone
in the sync index, and the original record creation version is newer
than the start point of the sync (in the continuation), the delete is not
sent to the client as the server has determined the client never previ-
ously received the create. A maintenance job permanently deletes
tombstones once they are seen by all recently active devices.

In some cases, CloudKit may indicate to the client that its sync
continuation is no longer valid by sending “reset required” in re-
sponse to a sync request. This could happen, for example, if the
zone was deleted (a unique zone identifier is embedded in the con-
tinuation, thus even if a zone with the same name is re-created,
continuations referring to the previously deleted zone would not be
valid). Another example is a client that did not sync for a long pe-
riod of time and needs to be told about a delete which was already
garbage-collected (the garbage collection job marks the continua-
tions of such devices as invalid). Reset means that a full re-sync
is needed to ensure consistency and forces the client to drop its
continuation and discard any local representation of server state.

A client usually invokes sync repeatedly (with updated continu-
ations), until it is complete, at which point it has a consistent snap-
shot of the state. It can then pause syncing until a change notifi-
cation is received (see Section 7). Our client-side library provides
a method that performs these repeated sync calls under the hood,
until no more changes are available, using call-backs to pass indi-
vidual state changes to the app when they are available. This helps
reduce latency (sync requests are submitted without waiting for the
app to process previous responses) and the granularity of responses
isn’t exposed to the app.

5.2 Reverse Sync and Meta-Sync
Some apps need to get the newest data first. For example, when

implementing a messaging app it may be important to show the

last hour of messages when the user first opens the app on a new
device; the complete message history doesn’t need to appear imme-
diately. Reverse sync starts by scanning the sync index backwards
from the latest change committed in the zone, and then automat-
ically continues in the forward direction (from the same starting
point), similarly to a forward sync. Scan direction is encoded in
the sync continuation. Notice that a consistent snapshot is achieved
only after the forward part of the sync completes. This is due to
the fact that multiple sync calls may be needed to completely scan
the sync index in the reverse direction, and some records may be
updated during that time. Such records will be encountered during
the forward part of the scan.

CloudKit re-uses its sync mechanism to track various metadata
changes. One note-worthy example is the tracking of changed
zones in a database, exposed to users as the meta-sync operation
which retrieves all zones changed from the client’s last continua-
tion. This is especially useful in the shared database (another ex-
ample is the tracking or notifications, mentioned in Section 7).

5.3 Snapshot Sync
Since the sync index only contains the latest version of each

record, scanning the index may skip any change that was super-
seded by a later change. Hence, scanning a prefix of the index is
not guaranteed to provide a consistent snapshot. For some apps,
this isn’t acceptable. For example, a client of a hierarchical doc-
ument store app may have a directory D with files F1 and F2. At
this point, the sync index may include the pairs [(1, D), (2, F1), (3,
F2)]. Now, suppose that D is renamed at version 20, and the index
becomes [(2, F1), (3, F2), ..., (20, D)]. Syncing down only the first
two entries does not provide a state of the system that ever existed.
In this case, since F1 and F2 are missing a parent, the state cannot
be shown to the user. This problem is exacerbated if one device
is writing faster than another device is syncing – it is possible that
sync state is always inconsistent at the slower device, rendering the
app unusable on that device.

To address this, an app can use the snapshot sync mode. In this
mode, entries are not deleted from the sync index when records are
updated (they are garbage collected when no longer needed by any
client). Snapshot points are chosen by the server (e.g., every 500
zone changes). When a client syncs, we choose a target snapshot
point (latest available at the time), and return it as part of the con-
tinuation to the client. When scanning the sync index, stale record
changes are filtered only when the newer record version appears
before the target snapshot point. This avoids sending redundant
versions while providing the client with a consistent snapshot.

A trivial implementation could store the version of every record
at every snapshot point. This would be extremely wasteful, since
most records remain unchanged. Instead, we use an auxiliary index
to store (1) the latest version of each record, and (2) for every up-
date, if the previous update to the record preceded the last snapshot
point, we store the version of the record at the snapshot.

Suppose that, in our example above, there were snapshot points
at versions 5 and 15. When (20, D) is written we update its latest
version in the auxiliary index by adding an entry ((D, MAX), 20),
where MAX signifies the top version of a particular record. Since
the previous version of D was prior to the latest snapshot point
we also add a mapping ((D, 15), 1). Suppose now that a client
requests to sync and we choose 15 as the target sync point. When
encountering the entry (1, D) in the sync index, we first look up (D,
MAX) in the auxiliary index, and find out that the latest version is
20. Since ((D, 15), 1) is in the index, we know that 1 is the latest
version up to the target snapshot, and can return that version to the
client. For the entry (2, F1) in the sync index, we find ((F1, MAX),
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2) in the auxiliary index and hence know immediately that this is
the latest change to this record, which can be returned to the client.

Since the app must always show the client a consistent state that
includes its own recent writes, if the client is writing while syncing,
its target snapshot may no longer be sufficiently up-to-date. Cloud-
Kit stores the latest version written by each client, and whenever
the target snapshot of a sync request falls behind, it is “forwarded”
– updated to the latest snapshot point.

Snapshot sync requires a small addition to server responses, which
now indicate not only whether more changes are available to sync
down, but also whether the client has synced all changed up to the
target snapshot point, in which case its state is consistent. Note that
reverse sync only considers snapshot points when in forward mode.

Snapshot sync is more expensive than a regular sync: the aux-
iliary index must be updated transactionally with the sync index,
scanning it may take additional time, and, we must retain older ver-
sions of records.

6. SHARING
This section describes CloudKit’s support for selectively sharing

records among multiple users. Examples include Apple’s Notes,
photo sharing, file sharing, social gaming, third-party apps for shar-
ing shopping lists, genealogy trees and many others.

When sharing a record r for the first time, r’s owner creates a
share record sr , a special record that facilitates sharing. The identi-
fier of this record is called the share identifier. This record contains
a list of participants – users with whom r is being shared, along
with their permissions (read-write or read-only) and other informa-
tion that will be made clear later in this section. For example, in
Figure 4, participant #1 is read-write, participant #2 is read-only
and anyone else has no access (publicPermission = none). When
storing sr , the share identifier is transactionally added to r using
Cassandra’s batch updates and CAS (both records are stored in the
same custom zone). Currently, CloudKit limits the number of par-
ticipants of a share to 100. Encryption adds an important layer
of protection for shared data and is fully supported (encryption in
CloudKit is beyond the scope of this paper).

These are confidential sessions–please refrain from streaming, blogging, or taking pictures

Share Record

Participant #1

acceptanceStatus: accepted 

permission: readWrite

Participant #2

acceptanceStatus: invited 

permission: readOnly

publicPermission: none

“Shopping List”

https://www.icloud.com/shopping-app/<unique token>

participants:

Figure 4: Share record for a shopping list.

In order to share a record with a particular user, clients use a
lookup service implemented in CloudKit. The lookup service has
access to user records – special system records stored in the app’s
public database. Given an email address, phone number, or user
record identifier, the lookup service returns participant information
that can be stored in the share record. If the email or phone number
do not correspond to a registered user, CloudKit creates a place-
holder user record, and only a user that can verify that he owns the
email or phone number can assume ownership of the user record
and have access to information shared with that user.

Once the share record is stored (or updated with new partici-
pant information), newly added participants have to be notified and
accept the share. To achieve this, we created the following mecha-
nism: every share record has a server-generated unique URL which
the owner can send to participants via his favorite method (e.g.,
email or messaging). Some of our first-party apps (e.g., Notes)
show users a UI through which they share the URL, and perform
the lookup and update of the list of participants under the hood.

These are confidential sessions–please refrain from streaming, blogging, or taking pictures

      Owner
1. Create a Share (private database)

2. Add Participant

5. Set participant status to accepted, 
update permissions index

3. send URL (e.g., email)

Participant

6. Add zone to shared database (if not there)

4. accept share

ACK + zone metadata

Figure 5: General flow of a new share.

Using the URL, a participant can accept the share and access
shared content. This is done either via the app or via the web, de-
pending on whether the participant’s platform runs the appropriate
version of CloudKit and app. If the web fall-back option is used,
the user is re-directed to a web page designated by the app devel-
oper (configured via the dashboard).

When a record r in zone z is shared and accepted, zone z is au-
tomatically added to participants’ shared databases, but no actual
records are created. This represents a window into the remote zone
they just accepted, providing access to shared records in that zone,
while automatically filtering out any non-shared records. Since a
zone is uniquely identified by its name and the owner identifier, two
owners can share records with the same name to the same partici-
pant and two different zones will be created in its shared database.

Each participant has an acceptStatus, initially set to invited. To
accept the share, a server in the participant’s partition contacts a
server in the owner’s partition, which changes acceptStatus to ac-
cepted. A participant can leave a share, changing its acceptStatus
to removed. An owner can remove participants and even delete the
share record, ceasing to share the record entirely. The records con-
tinue to exist in the owner’s private database.

Simple read flow. In a shopping-list app, Alice shares groceries
with Bob. When Bob reads Alice/shopping-lists/groceries, Alice’s
shopping-lists zone is registered in Bob’s shared database. But this
is not the source of truth – Bob’s database may not yet reflect per-
mission updates made by Alice. Hence, we send an RPC to one
of the backend servers in Alice’s partition. It checks that Alice has
read access to the zone, and otherwise returns “zone does not exist”
to Bob (unlike “access denied”, this does not reveal the zone’s exis-
tence). If Bob has access, we read the groceries record and find the
share identifier. We check the share record to make sure that Bob
has read access, and if so return the groceries record to Bob. In
practice, reading records for the purpose of checking permissions
is avoided by maintaining a permissions index.

Hierarchies. Often, an app entity is represented by a hierarchy
of records. For example, a document including images, forms, and
other objects could be represented by a root record, and contained
objects would be records referencing the root. When the document
is shared, a share identifier is added to the root. On record access,
we find the share identifier by traversing up the hierarchy.

One of the benefits of this design is that sharing is recursive and
inheritable – descendants automatically inherit the sharing proper-
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ties of their ancestor, even if added at a later time. Another benefit
is that sharing/un-sharing a hierarchy of records requires a change
to a single record. A consequence, however, is that we do not al-
low a descendant to be shared differently than its ancestor (though
sibling records can be shared differently). Specifically, if a record
includes a share identifier, no ancestor may include a share identi-
fier (sharing an ancestor requires first un-sharing its descendants).

A read-write participant can add, modify and delete records, but
they must be descendants of the root record and it cannot delete the
root. Records added by a participant belong to the owner, reside in
the owner’s private database and counted against his quota.

Change-tracking. To support sync, the owner’s custom zone
maintains a share change index which is similar to a normal sync in-
dex but includes only changes to shared records in the zone. When-
ever a record is updated, we find the relevant share record by travers-
ing up the record hierarchy and update the index by adding an entry
that maps the new version to both the record and the share identi-
fiers. Participants issue a sync request to a zone in their shared
database (only forward sync is currently supported), which is prox-
ied to the owner’s partition. There, the index is traversed starting
from a continuation provided by the client. Changes to records in
shares for which the client has read permissions are returned.

When a hierarchy of records is shared, only the root is added to
the share change index. When a participant syncs, we have to return
all the records and hence traverse the hierarchy (with the help of an
index that maps parent records to their children). One complication
is that the number of changed records that can be returned in a sync
response is limited and the limit can be reached during a traversal.
We can pause the traversal at any point, saving the final path from
the root. When the client issues a new sync request, we resume
the traversal. If the hierarchy was modified and the saved path is
no longer valid, we find a valid prefix of the path, and resume the
traversal from there. This method significantly simplifies the re-
quired reconciliation logic and reduces saved state, in the expense
of potentially sending duplicate changes to the client. If the path is
valid but changes occurred in the already-traversed portion of the
hierarchy, these changes appear later in the share change index and
are sent to the client after the traversal completes.

In our example, both Alice and Bob (assuming he has read-
write access) can edit groceries. This is performed by a CloudKit
server in Alice’s partition. Once the share change index is updated,
an asynchronous message is sent to all participant partitions for
the relevant share. There, we notify participants that have regis-
tered database subscriptions for their shared database. Clients then
follow-up with a meta-sync request to find out which zones have
changed, followed by sync requests to these zones. Unlike sync,
meta-sync in the shared database is processed locally in the par-
ticipant’s partition, avoiding multiple RPCs to the owners. Since
participants are notified asynchronously, there is a small delay un-
til a meta sync reflects new updates to shared content.

7. QUERIES, SUBSCRIPTIONS AND NO-
TIFICATIONS

Queries. While an app may want to sync-down some of the state
it stores in the cloud, in many cases maintaining a local copy of all
the data is either not desirable or not feasible. Instead of syncing
down a zone’s state an app can use the query interface to retrieve
a subset of records stored in the zone. Queries operate on a single
record type across record zones (at the database level) and support
flexible filters on record field values. These include standard com-
parison operations for numeric values, basic string match operators
for string values, and containment operators for list values. For lo-

cation field values we support proximity filters, where an origin lo-
cation and a proximity radius are provided. Filters can be combined
using AND and OR into compound (nested) filters. For example,
a user of a restaurant app may query for all Japanese restaurants
within a certain radius from a location. A user of a News app may
be interested in certain topics or news outlets.

Queries are implemented using Apache Solr [6]. Waiting for
Solr to index new data may significantly slow-down writes, and
hence is done asynchronously, without blocking client operations.
This means, however, that queries are only eventually consistent
and might not immediately return the most-recently written data.

Many apps use both queries and sync, either in different zones
or even in the same zone. For example, queries can provide an
immediate response to a specific user request, e.g., to populate a
page viewed by the user, while syncing can be used to update its
state in the background.

Both queries and sync are polling the data store. It is often better
to register a subscription and have CloudKit notify the user when
relevant data is written. Developers specify when their app needs
to be notified. CloudKit supports three types of subscriptions:

Zone subscription. The client provides a zone and CloudKit
sends notifications for every record change in that zone. Notifica-
tions are sent to all devices for the registered user account, except
for the device which caused the zone change (e.g., saved a record).
The subscription can optionally include filters based on event type
(record insertion, modification or deletion) and on record type.

Database subscription. The client specifies a database (private
or shared) and gets notified for changes to its zones. This includes
zone creation, deletion or modifications (changes to records in the
zone). The main motivation for database subscriptions (as well as
meta-sync, described in Section 5.2) is the shared database, for
which this is currently the only supported subscription type. In
the private database, the list of zones used by an app is usually pre-
defined and the user can subscribe for change notifications in each
individual zone. In shared databases, zones appear and disappear
dynamically as other users share content with the user. Hence, the
list of zones is not known to the app developer a-priory.

A database subscription notifies the client that some zones have
changed. The client can then use the meta-sync interface to find
out which zones have changed, and finally can issue sync requests
to get record changes from these zones (the client-side library pro-
vides a single method that performs these steps).

Query subscription. Similar to a zone subscription, in that it re-
turns records, but can operate across multiple zones like the query
interface. Used to register continuous queries which, just like nor-
mal queries, support flexible filters. They are triggered whenever
a response to the registered query changes. The subscription in-
cludes a list of fields whose values are sent back in the notification,
in addition to the record identifier.

An app developer pre-defines query subscription types in the
development environment and CloudKit creates a parameterized
query for each type. For example, a restaurant query could be
“restaurant rating > x and location within y kilometers of coordi-
nate z”. When a user sends a restaurant query subscription, Cloud-
Kit makes sure that the type was pre-defined and if so creates a
CloudKit record representing the actual (non-parametarized) query
subscription, including the provided values for x, y and z. The
query is also indexed in Solr.

When a record is updated, CloudKit checks whether query sub-
scriptions were registered for this record type and if so creates an
asynchronous task to find all affected queries. For a limited class
of query subscriptions, looking up relevant subscriptions is opti-
mized by indexing queries similar to field values. For example, if
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a user was interested in records with a numeric field value > x, we
can index the query and when a new record with field value y is
saved create a query for all subscriptions looking for values < y.
This cannot be done for all types of query predicates and in some
cases we simply read all registered queries (for the relevant record
type), and evaluate a potential match with the newly saved or up-
dated record. To bound server resource consumption, we limit the
number and type of different query subscriptions for each app.

Notifications. There are two common use-cases for push notifi-
cations in CloudKit: (a) notifying a user about something important
(visual notification), and (b) notifying the app that data has changed
so that it can update itself (silent notification). When registering a
subscription, the developer specifies various context attributes al-
lowing a correct interpretation of the notification by the client de-
vice, as well as actions to be taken. For example, a notification can
have a title and body, can count towards the app’s number of missed
notifications, have a specific notification sound, etc.

CloudKit uses the Apple Push Notification service (APNs) to
send push notifications. When received on the device, a notification
is routed to the appropriate app (launching it in the background, if
needed), which in turn can choose whether and how to present it to
the user, using the included context and action attributes.

Currently, notifications are best-effort and can be lost if the client
is offline for a long period of time. When back online, it can get
updates by using the sync, meta-sync and query interfaces. To miti-
gate notification loss further, we’ve implemented notification sync,
which reuses the sync abstraction for fetching missed notifications.
In the future, we may deprecate notification sync and leverage new
APNs capabilities. As our service scales further, we may also sup-
port one-time subscriptions that need to be re-registered.

Examples. Consider two simple apps: a shopping app and a
messaging app. In the first app users create and modify shopping
lists. Each list can be a record in the shopping-lists custom zone
in the user’s private database. When one device changes or adds
a list, all other devices should show the updated list immediately,
without polling. This can be achieved by a zone subscription and
silent notifications – whether the app is in the foreground or back-
ground, silent pushes are very useful for telling the app that some
information of interest has been added or changed. The app can
then sync from the zone to update its local state.

In a messaging app, suppose that users can post messages in
a single chat room, subscribe to topics of interest and be notified
when someone mentions such topic. Our data model could consist
of two types of records: Messages and Users. Because Messages
can be seen by anyone using the app, they can be stored in the pub-
lic database. For this app we can use query subscriptions. One sub-
scription would be for new records of type Message in the public
database’s default zone. Whenever a new message is added, a silent
notification would notify the app, including the message informa-
tion which the app can use to update its local state. The second
subscription could capture topics of interest – the query predicate
would match all Message records where message text contains such
topic. The notification in this case can include a visual alert, poten-
tially showing a banner, making a noise, and (if missed) updating
the app’s missed notifications count.

8. SCHEMA MANAGEMENT
For each record type, CloudKit stores a type definition in Cassan-

dra. Table 6 shows a simplified record type definition for ”Restau-
rant” records (e.g., in a restaurant reservation app).

A record type definition is immutable: whenever it is modified
(allowed only in the development environment), a new record type
is created with a different type id (but the same type definition id).

Table 6: Example: Restaurant record type
type id (primary key) uuid1
type name Restaurant
type definition id uuid2
Field types (see below)
Query subscription types (see Section 7)

field id name type flags
1 ”Name” String QSZ
2 ”Cuisine” Integer Q

The type definition id signifies the “incarnation” of the type – if the
“Restaurant” record type is deleted and created again, this would
result in a different, incompatible record type with the same name
but different type definition id. Record type definition stores in-
formation about record fields: each field has a name and assigned
a monotonically increasing id. Fields can have up to 3 index-
ing flags: queryable for equality (Q), full-text searchable (S), or
sortable (Z), determining whether and how field values are indexed
in Solr. The type definition also stores query subscription types.
These are query templates defined by the app developer (see Sec-
tion 7), e.g., restaurant record inserts with cuisine c located within
x kilometers of coordinate z. Each template is assigned a unique
identifier, used to help index instantiations of the query in Solr, i.e.,
actual queries of this type submitted by users of the app.

A schema stores information about all record types for a con-
tainer, including their name and type id. A simplified schema for a
restaurant reservation app is shown in Table 7.

Table 7: Example: schema with three record types
schema id uuid3
parent schema id uuid4

record types
Restaurant uuid1
Review uuid5
Reservation uuid6

Like record types, schemas are immutable – each schema has a
schema id and whenever a change occurs in one of the record type
definitions, a new schema is created with a different schema id,
where the updated record type name maps to its new type id. Each
schema also stores its predecessor schema id, and various metadata
(schema modification time, what device made the change, etc.).
Previous versions of record types and schema definitions are re-
tained. This allows to correctly interpret data stored using previous
schema versions and to track the evolution of a container’s schema.
Both the development and the production environment store the lat-
est schema id, updated atomically using Cassandra’s CAS.

Using the schema. Record store-requests contain record fields,
each with a type and a value; the type is used to deserialize the
value. Latest container schema is used to map the record name to
its latest type definition. Each existing field in the request is vali-
dated against its type stored in the record type definition, in most
cases simply checking for type equality. If previously unknown
fields were provided, a new type definition is created, as well as a
new schema, and the container’s latest schema id is updated. When
the record is stored in Cassandra, only field ids and field values are
stored (not field names or types), in addition to the record type id.
This allows reusing field names, e.g., removing a field ”Cuisine”
and creating a field with the same name but a different type. Ambi-
guity is avoided since the two fields have different field id numbers.

On record fetch, requests retrieve records from Cassandra, and
using the type id stored in the record we find the record type defi-
nition with which the record was stored and use it to deserialize the
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record. Then, we find the latest type definition for this record type
name, by using the latest container schema. If the type definition id
has changed and is different from the one used to store the record,
this record should not be returned. If only the type id has changed,
the changes are applied to the retrieved record. For example, some
of the fields may have been removed from the type definition –
these fields are filtered out before the record is returned to the user.

Promoting and deploying the schema. When the container
schema is promoted to production, the development schema ob-
ject is cloned, assigned a new schema id, and the parent schema id
is set to the latest production schema. The latter is then atomically
assigned to point to the newly created schema object. Usually, only
a subset of the development schemas will be promoted.

Each container has an authoritative partition, responsible for main-
taining the schema. Other partitions cache immutable schema ob-
jects, fetched from the authoritative partition on demand. Since the
users of a container may be mapped to different partitions, any up-
dates to the schema requested by a user needs to be forwarded to
the authoritative partition. The user’s partition may already cache a
previous version of the schema with a schema id x, in which case
it creates a new schema with an id y and sends a request to the
authoritative partition, which performs a CAS update on the latest
container schema, conditioned on its latest version still being x. If
this fails, an up-to-date schema is sent back to the user’s partition
and, if necessary, the process repeats.

9. RELATED WORK
Multiple commercial and open-source frameworks, e.g. [7, 10,

16, 17, 22, 24, 25, 27, 28], have emerged aiming to simplify mo-
bile app development and provide mobile backend as-a-service. To
the best of our knowledge, this is the first paper describing the im-
plementation of such commercial framework. CloudKit is a leader
in this space and has a unique data model and feature-set that was
proven useful for many apps, including many of Apple’s current
and emerging apps. For most apps, it is the only backend needed
(for others, CloudKit exposes APIs to interact with other back-
ends). CloudKit currently scales to hundreds of millions of users.

These systems build on decades of academic research, in partic-
ular on replication protocols for mobile computing [44]. The proto-
cols can be categorized based on communication topologies (client-
server vs. peer-to-peer), partial or full replication, data model and
consistency guarantees. In this design space, CloudKit follows the
client-server replication model, similarly to [37, 39, 34, 46]. But,
unlike [37, 39, 46], provides very limited support for disconnected
operations. Instead, CloudKit APIs allow apps to re-sync and re-
solve potential conflicts when connectivity is restored. Similarly to
other systems, like [45, 34], we chose not to offer one-fits-all au-
tomatic conflict resolution, allowing apps to define their own reso-
lution logic. Many apps using CloudKit maintain a local cache of
CloudKit records or use device storage directly to support discon-
nected operations and improve performance. Third-party libraries
were also built to provide such functionality on top of CloudKit.
CloudKit provides support for both full and partial replication but
leaves this decision up to the app – an app can sync state changes
and maintain a full local replica of one zone, while using queries
and query subscriptions to define selective state filters (akin to sys-
tems like [33, 40, 41, 43]) in a different (or even the same) zone.
Unlike systems providing weak or eventual consistency, e.g., [45,
37, 40], CloudKit supports atomic (linearizable) updates, reads and
sync operations. Like [36, 4, 17], CloudKit provides condiditonal
updates but goes further to provide transactional batches that can
include both reads and writes. It does not, however, support full
fledged transactions provided, e.g., by [1, 19, 46].

Unlike most NoSQL databases and many commercial competi-
tors that offer generic key-value storage where the value is a blob
of information (e.g., a JSON file), one of CloudKit’s distinguish-
ing attributes is its expressive schema support – a CloudKit schema
consists of one or more record types that have a name, fields, and
other metadata. App developers define the schema by storing data
in the sandbox environment (and with the help of a dashboard) and
CloudKit enforces it. For more complex data, CloudKit provides
cross-record references with various semantics.

Push notification services [3, 8, 18, 30] allow application cloud
backends to notify user devices. Other cloud services [32] can pro-
vide reliable notification delivery. Devices interact directly with
CloudKit, store data, register various types of subscriptions and
receive push notifications, without the need to configure or inter-
act directly with a push notification or another service. Currently,
CloudKit provides notification reliability by implementing notifi-
cation sync, however we find that push service reliability is suffi-
cient for the vast majority of apps. Some cloud storage services [1,
2, 20] similarly allow subscribing to data change notifications, but
most don’t support query subscriptions as CloudKit does.

Existing cloud services are exposed to mobile apps through REST
APIs or wrapper libraries of the APIs. CloudKit supports a REST
API, useful for web clients, but most mobile clients interact with it
via a daemon running locally on the device. Often, multiple apps
on a device use CloudKit, and the daemon maintains a single per-
sistent connection with the cloud for all client apps, routing app
requests, responses and notifications. In many cases the client-side
library provided by the daemon encapsulates multiple CloudKit op-
erations (e.g., repeated sync), or provides higher-level abstractions.

10. PRODUCTION EXPERIENCE
CloudKit has been deployed in production for more than three

years. In this section we describe some of the challenges we faced,
and share production measurements.

10.1 Production Challenges
Maintaining, deploying, evolving and scaling CloudKit involves

many challenges. We provide several examples.
Managing dependencies. CloudKit depends on other back-end

systems and services. Examples include storage systems, account
management systems (e.g., for validating user accounts, or finding
the CloudKit partition for a user), quota management systems, and
more. These systems need to be deployed in a compatible way and
provisioned to sustain CloudKit’s request load. In cases when this
wasn’t possible, we’ve used caching, added more functionality to
CloudKit to reduce the dependency (such as request validation) and
in some cases resorted to reduce the feature set.

Backward and forward compatibility. Upgrading dependent
systems is challenging since it creates compatibility issues with
CloudKit. Upgrading CloudKit itself in a partition is done gradu-
ally, which may cause incompatibility with servers that weren’t up-
graded. For example, information added to cross-server messages
or stored content in a new version of CloudKit may be ignored or
misinterpreted by a server still running the old version. We’re mit-
igating such issues by using Protocol Buffers and controlling most
new features with flags, which remain turned off during a partition
upgrade, and are enabled only after all hosts are updated. CloudKit
is accessed from a variety of client devices and over the course of
three years dozens of client software versions were released. Some
clients never upgrade and CloudKit needs to support requests com-
ing from such devices. This is a major challenge for developing
and testing new features (such as sharing) and software releases.
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Logging. Initially, CloudKit used two logging systems – one for
a detailed account of recent events (development logs), the other
for aggregate time-series and alerts. Over time, a data warehousing
system was added, and recently an event aggregation system that
exposes some server events to app developers through the Cloud-
Kit dashboard (this allows developers to combine client and server
logs, which is tremendously helpful for debugging). These sys-
tems collect massive amounts of data and require provisioning and
maintenance. For example, the log of recent events is of the order
of 100TiB per day.

Multi-tenancy. The underlying Cassandra does not provide iso-
lation between users or apps. CloudKit sets fairly restrictive limits
on what a single device can do in one request (number of records,
request size, size of each record, etc). Most requests to Cloud-
Kit access a small set of records. For example, sync encourages
accessing only the recently updated records and in limited batch
sizes. Rate-limiting requests (per client device, user and applica-
tion) limits the effect a user can have on the system. Furthermore,
the operations we chose to expose map linearly to storage accesses,
which helps protect against malicious users and bugs. This is com-
plemented by monitoring and alerts that prompt human interven-
tion. Device and software heterogeneity, non-uniform app popular-
ity across users and geographical regions, and other factors occa-
sionally result in load imbalance. As mentioned in Section 3, we
periodically rebalance users across CloudKit partitions to improve
load-balancing, resource utilization and access locality.

Scale amplifies everything. When running at CloudKit’s scale,
every extra action or request to an external service can have a signif-
icant effect. For example, a small code change accidentally caused
client device information to be updated in memcached on every
request, which was both a useless increase in traffic and hurt hit
rate for other cached information. In another instance, a configura-
tion file was accidentally deleted during a release, which specified
the number of connections each CloudKit JVM instance maintains
with Cassandra. This caused the total number of connections to
Cassandra to increase 10-15x, triggering many alerts. Finally, since
CloudKit serves hundreds of millions of active users, deciding how
frequently to sync or how much information to store per user may
have significant costs. For example, the cost of storing an extra
1MB per user is hundreds of TiB for all users collectively, while
having each device check-in with the backend every 15 min would
generate hundreds of thousands requests per second.

10.2 Production Measurements
Public and private data. We identified the top apps using Cloud-

Kit, based on their number of active users in the past month, and
examined their use of private and public databases. We found that
20% and 49% of the apps use only the public or the private database,
respectively, and 31% of apps use both databases (20 apps use the
shared database). We conclude that the segregation of data into
private and public domains is useful.

Reading data. Currently, 44% of CloudKit’s third-party app
read traffic are record fetch operations, followed by queries (37%)
and sync requests (19%). First-party apps, however, make an in-
creasing use of the sync+notify APIs. Specifically, for 57% of first
party apps sync traffic exceeds queries or record fetch operations,
and for 43% of first party apps it is 90% or more of their read traf-
fic. Figure 8 examines record read, sync and query request server-
processing latency. The median record read latency is ∼ 18ms.;
query and sync take ∼ 50ms.

Writing data. Figure 9 demonstrates that record save request
latency depends sub-linearly on the number of records inserted or
updated in the request. For third-party apps, 98% of record save
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Figure 8: Operation processing latency (read, query, sync).
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Figure 9: Record save processing latency as a function of the
number of saved records.

requests do not use batching, whereas a significant fraction of first-
party apps use large batches (e.g., photo library and mobile backup).
Batching allows multiple records to be saved atomically (in custom
zones) and saves client-server round-trips.

Exercising CloudKit’s APIs. apps use CloudKit in various ways
(see Section 4), resulting in diverse workload patterns. Figure 10
gives two examples. On the top we have a first-party document
sharing app, subscribing to database notifications for both the pri-
vate and the shared database. Upon notification, it issues a meta-
sync request to find all changed zones, followed by sync requests
from these zones. Meta-sync requests are also issued when the app
is launched or brought to the foreground. Further increasing the
rate of meta-syncs is the fact that some change notifications are
sent to multiple devices and participants sharing content. Record
reads are performed when a significant conflict occurs while sav-
ing a record that requires reading other records to resolve. The
third-party app (bottom figure) stores and syncs multiple stream
cursors, each corresponding to a different event stream (similar to
Tweeter’s TweetDeck). Each update generates a notification and a
sync from this user’s other devices using the app, if any, explaining
why sync rate is slightly lower than the record save rate. This app
uses queries to retrieve data.

Notifications. Currently, zone notifications are by far the most
prevalent, accounting for 86% of notifications, followed by database
notifications (13%) and finally query notifications at less than 1%.
We expect the use of database notifications to increase as the adop-
tion of sharing, a relatively new CloudKit feature, continues.

Sharing. Figure 11 examines sharing. On the top we show new
share creation rate, dominated by multi-player game sessions cre-
ated in our gaming platform, followed by document and activity
sharing apps. On the bottom we present the update rate to shared
data, and the number of participants per update (the median is a
single participant (owner not counted), whereas 95% and 99% are
6 and 7 participants).
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Figure 10: Workload of first-party document sharing (top) and
social-stream (bottom) apps. Not all API calls are shown.

CAS contention. Our custom zone implementation serializes all
updates to each zone using Cassandra CAS. When multiple con-
current updates are attempted in the same zone, by devices of the
same user or of multiple users sharing content in the zone, only
one succeeds and the other retried by the backend and may eventu-
ally fail. We measured the frequency of such errors for the busiest
150 apps (based on the volume of save requests), taken over more
than 5 billion save requests from a single day. We find that 75
apps experienced less than 0.005% such request failures and 122
apps saw less then 0.1% errors. Internal apps experienced at-most
0.05% errors while 8 third-party apps experienced more than 1%
errors. Our experience shows that carefully designing the app data
model to partition data across multiple zones, and designing app
logic to avoid correlation of data update-times across client devices
as much as possible, drastically reduces zone contention.

Schema cacheability. Immutability of schema and record type
definitions facilitates their cacheability. They are cached by each
server instance, and on the level of individual requests. Each re-
quest may involve multiple records and record types; in order to
provide a consistent view of the schema for all operations within a
request, we fetch the schema once at the beginning of a request and
cache it at the request level. Hence, a record type read will likely
find the type definition in the request cache, or the server instance
cache, before falling back to reading the definition from Cassan-
dra. Quarter-long measurements in production across all Cloud-
Kit partitions show that cache hit rates are nearly constant: For
record type definition reads the average request level cache hit rate
is 0.9 while the server instance cache hit rate is 0.995. For schema
definition reads both hit rates are close to 0.96. Request level hit
rate is lower for record type definitions compared to schema defini-
tions since there is a single schema but potentially multiple record
types accessed by the same request. Instance-level hit rate is better
for record types simply because they are configured to take much
longer to expire compared to old schema definitions (old record
types are useful to deserialize previously stored data). Only one
out of ∼2800 record type reads and one out of ∼700 schema reads
reaches Cassandra. This rate could be reduced further by using
cluster-level caching (e.g., memcached).

Global use. Finally, Figure 12 presents CloudKit client requests
from around the world, each region experiencing a diurnal pat-
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Figure 11: Sharing: num. of shares created/min (top), share
updates/sec and num. of participants per update (bottom).

tern. Total usage peaks morning PST, when wake-hours overlap (a
smaller peak occurs late evening PST). We run non-critical mainte-
nance jobs when client request load is low.
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Figure 12: Relative request rate by client origin.

11. CONCLUSIONS
CloudKit is a leading mobile backend service, used extensively

at Apple and by many third-party apps and hundreds of millions of
active daily users.

Unlike other services which make it easy to rapidly develop an
app but hard to evolve it, CloudKit prepares apps for scale from
the get-go by making schema management explicit and by sup-
porting schema evolution and deployment. CloudKit enforces the
schema on client updates and rejects inconsistent schema modifica-
tions made by the developer after the app is deployed to production.

Led by an observation that most apps store user data and com-
mon app data, CloudKit explicitly partitions app data into private
and public databases, with different capabilities. Private databases
allow apps to further partition data into zones and guarantee strong
consistency within each zone.

CloudKit provides an explicit set of tools to achieve consistency
across devices and users: a sync/subscription interface (that most
first-party apps are adopting) as well as queries and continuous
queries for selective state replication. Zones make it easy to use
these capabilities for different parts of an app’s data or to use them
jointly for the same data.
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