L2/16-105

Coded Hashes of Arbitrary Images

(or: the last frontier of emoji encoding)

Steven R. Loomis Keith Winstein Jennifer 8. Lee
srl@icu-project.org keithw@cs.stanford.edu jenny@jennifer8lee.com
(individual contribution) Stanford University Emojination
2016-05-02

https://srl295.github.io

1 Introduction

Emoji are pictographs (pictorial symbols) that are typically presented in a col-
orful cartoon form and used inline in text. [..] In Unicode 8.0, there is a total of
1,282 emoji, which are represented using 1,051 code points.

Recently, there has been considerable interest in adding newly created pictorial symbols,
not found in any existing character set, to the Unicode Standard as emoji.e Advocacy groups
and others request these code points because Unicode plain text remains the dominant
interoperable interchange format for messaging. In practice, before a new emoji can be used,
a code point must be assigned and be recognized by the sender and receiver. The stated
longer-term goal for Unicode is that implementations should support “embedded graphics,
in addition to the emoji characters”.

In this proposal, we describe a mechanism to uniquely identify arbitrary images within
a plain-text Unicode character sequence. This will allow implementers to create their own
emoji without needing to request and wait for the assignment of a code point. The basic
idea is to encode a globally-unique secure hash of the emoji in a Unicode character sequence.
Once the receiver knows the image’s hash, it may already have the corresponding image, or
may have a choice of several mechanisms to retrieve it.

Our technique will gracefully degrade on legacy Unicode implementations, but our pro-
posal is limited to allowing Unicode to uniquely identify an arbitrary image. We propose to
leave to implementers the details of how to retrieve the actual image.

'Mark Davis and Peter Edberg, eds. Unicode Technical Report 51: Unicode Emoji. 2015. URL: http:
//www.unicode.org/reports/tr51/.

2E.g., Taco Emoji campaign, Beard Emoji campaign, Dumpling Emoji campaign. There are currently 79
candidate emoji that have been assigned tentative code points.

3Davis and Edberg, |Unicode Technical Report 51: Unicode Emoji, op. citl, Section 8, “Longer Term
Solutions”.

[git] = 28321ec

https://srl295.github.io
http://www.unicode.org/reports/tr51/
http://www.unicode.org/reports/tr51/
https://www.change.org/p/unicode-consortium-the-taco-emoji-needs-to-happen-aeb4ebc7-a323-441d-90b9-20b90c83a8c6
http://www.beardemoji.com/
http://www.dumplingemoji.org
rick@unicode.org
Text Box
L2/16-105

1.1 Background

The demand for emoji characters has surged in the last few years as public has become
enthralled by the multicolor glyphs that can appear in-line with text. Emoji have been the
subject of an explosion of press pieces, numerous late-night television comedic segments, and
even an upcoming movie from Sony Pictures Animation. Never has the encoding attracted
such attention. As emoji use has proliferated, there have been increasing demands for better
representation in the existing emoji set — ranging from hair variations (color and facial), to
more female presence, to single-family households, to regional flags.

However, the current emoji approval process takes upwards of 18 months, starting from
when a proposal is first introduced, to when it moves out of the Unicode Emoji Subcom-
mittee, to the Unicode Technical Committee, to ISO and back again for final approval.
This current process, overseen by a relatively small organization whose stated main mission
is focused on encoding existing languages, is widely understood as a bottleneck and also
incredibly resource intensive on members’ time.

To fill the demand for customizable glyphs, there has been an explosion of emoji-like
images from a variety of vendors, ranging from personalized Bitmoji, to highly publicized
“Kimoji”, to earnest refugee-themed emoji. These rogue “moji” are not technically emoji at
all, but rather images or “stickers” that can be sent through messaging apps. In addition,
vendors are using technical workarounds such as the Zero Width Joiner (ZWJ) and tagging
to create emoji images that do not have to be assigned code points.

Meanwhile, the variants of single emoji created by different vendors leads to confusion in
the intent of the sender and recipient.? The inconsistent imagery is at tension with Unicode’s
goal of having interoperable platform-neutral communication. A longer term architectural
solution is needed.

2 Proposal

Outline: implementations will be able to create “implementation-defined emoji,” and allow
their users to send them to receivers. The sender encodes a secure hash of the emoji (which
serves as an unforgeable globally unique identifier) in a sequence of coded characters, which
we call a Coded Hash of an Arbitrary Image (CHAI). Upon receiving the CHAI sequence,
the receiving implementation may already know the corresponding image, or may have to
request it either from the sender or from a third party.

4Mark Davis and Peter Edberg, eds. Unicode Technical Report 52: Unicode Emoji Mechanisms. 2016.
URL: http://www.unicode.org/reports/tr52/.

SHannah Miller et al. “‘Blissfully happy’ or ‘ready to fight’: Varying Interpretations of Emoji”. In:
ICWSM ’16 (2016). URL: http://grouplens.org/site-content/uploads/ICWSM16 _Emoji-Final _
Version.pdf.

[git] = 28321ec

http://www.unicode.org/reports/tr52/
http://grouplens.org/site-content/uploads/ICWSM16_Emoji-Final_Version.pdf
http://grouplens.org/site-content/uploads/ICWSM16_Emoji-Final_Version.pdf

2.1 Representing the emoji

The first step to creating an implementation-defined emoji will be to represent the emoji in a
canonical form. This format will need to be specified, but we do not do so here. As a straw-
man, we suggest a JSON document with three keys: content-type (any TANA-registered
MIME Media Type), image (a Base64-encoded suggested rendering of the emoji, interpreted
as the format named in the content-type field), and name (name of the emoji, which may
be used in fallback rendering for visually-impaired users). We call this representation the
“emoji description.”

2.2 Secure hash

The implementation will identify the emoji by taking the SHA-256 hash of the emoji descrip-
tion. Given a secure hash value, it is intended to be intractable to find a different input that
produces the same hash value. This is known as “second-preimage resistance”; SHA-256 is
believed to have strong second-preimage resistance.

2.3 Code points allocated to express the secure hash

We propose to allocate 65,536 (2'°) code points to represent bits of the secure hash. Each code
point will express 16 bits of the secure hash. We envision allocating Plane 13, from U+D0000
through U+DFFFED. (The two code points at the end of the plane are noncharacters.) These
65,534 code points will represent the 16-bit values 0000 through FFFDq. In addition, we
envision allocating U+EFFFC to represent the value FFFE 4, and U+EFFFD to represent
the value FFFF5. We refer to these 65,536 code points as “CHAI characters.” Each code
point will have general category Cf.

In UTF-8, UTF-16, and UTF-32, every code point outside the BMP requires 32 bits to
encode. As a result, the efficiency of this scheme will be 50% in each Unicode encoding
scheme (16 bits of the hash will consume 32 bits in memory, on disk, or on the wire).

2.4 Encoding an implementation-defined emoji

To code a CHAI, the sender first encodes a “fallback” base character that most closely ap-
proximates the implementation-defined emoji. This will allow rendering to degrade gracefully
on receivers that do not support CHAISs.

Next, the sender encodes the secure hash by appending between between one and sixteen
CHAI characters. This will represent a prefix of the SHA-256 hash of the emoji description.
The sender chooses how many bits of the hash to include. (We expect 80 bits, or five CHAI
characters, to be sufficient for typical use today. The risk of including too few bits is that
the hash may no longer be globally unique, especially in the presence of an attacker who
wishes to create a different image with the same hash prefix.)

Therefore, the actual encoding is:

<basechar> + <CHAI char> + <CHAI char> + <CHAI char> ..

[git] = 28321ec

where the basechar represents a fallback base character, and each CHAI character (from
the range U+D0000 .. U+DFFFD and U4+EFFFC .. U+EFFFD) represents 16 bits of the
secure hash of the emoji description.

2.5 Receiving and rendering a CHAI

On receipt, the receiver determines if it already knows of an emoji whose hash matches the
prefix encoded in the CHAI characters. If so, it displays the emoji (either using the image
provided in the emoji description, or an image known locally). Otherwise, the receiver
displays the base character while it attempts to retrieve an emoji description whose hash
matches the encoded hash prefix.

We do not specify how this retrieval will take place; we expect it to vary based on
the messaging protocol. In some protocols, it might be easiest for the receiver to simply
ask the sender to send the full emoji description. In others, the receiver might consult an
online repository run by the implementing vendor. Alternately, the receiver might consult a
community repository where anybody can contribute any emoji description.

Because the CHAI serves as an unforgeable globally unique identifier for the emoji de-
scription, the receiver is intended to have confidence that if it finds a matching emoji de-
scription from anywhere, it can display it per the sender’s intent.

Depending on the protocol, as the input arrives, the receiver may have some ambiguity
about when the sequence of CHAI characters ends. A receiver may choose to wait until the
next non-combining character (signaling the end of the combining character sequence), or a
protocol-defined end-of-message signal, before retrieving the emoji description.

2.6 Privacy

As Unicode Technical Report #51 notes: “There are also privacy aspects to implementations
of embedded graphics: if the graphic itself is not packaged with the text, but instead is just
a reference to an image on a server, then that server could track usauge.”E

We agree. A similar exposure could occur if the protocol provides for the receiver to ask
the sender to send an unknown emoji description; this could unwittingly expose if anybody
else has ever sent the same emoji to the receiver.

It is not the goal of this document to address all aspects of embedded graphics, and we
intend to leave to domain experts and implementers the decision on how to handle these
questions. For example, a client might behave similarly to current practice in retrieving
external images in email. If the receiver already knows of the identified emoji, it can display
it, but otherwise the receiver would display the fallback (base) character and ask the user to
push a button before retrieving the emoji description.

5Davis and Edberg, \Unicode Technical Report 51: Unicode Emoji, op. citl, Section 8, “Longer Term
Solutions”.

[git] = 28321ec

3 Example

3.1 chai.json

Example Canonical Emoji Description

{"name": "CHAI","content-type":"image/png","image" :"iVBORWOKGgoAAAANSUhEUgAAAEAAAABACAYAAACqaXHeAAACTO1EQVR42u2ZMUvDQBiGS4YM4tChU/EHiFMRp450pTg4dBR/
gENnpOIH8QAIR21TTdfqoOBQRRAEG8VNOnVy6iTFsX7epReJIU2ruf Qu8D7wUS5pL+/39
vL17pLJAAAAAAAAAAAAYXyyyKZEalbolQqxqKbEgKrQK92AQUoMGCRhwGMSnSYECb1S2UuZAXuy01t jcSM65ZHXPPm80GnK6KzmS9wzoa65AXVZI7UWk jBvjzQ3YCTDgNgME /
sqQBXWAhE6pyRfEsXFKDNiR1XzBVwN4bPJPcizZMWbxzuKNntt961s9clpdctoW9VsNInnM2ofs3AFr75NztksvriW16am6RO1ynVytPD6erpmluCJ1GHPe0AmOSRvwcMwz jhF/
QvTAXwIVwQRedD7q2u65QLpgLnyZguQnxxHiCPNFpwm0ZRn71WxR3hPIf1wPts09MQkXcnhFddhYT3038juB53k/v/
E8GCcFOyDGjMMcBO6DaINnMBc4Ve064BwzkGFJdiwD9GhNBbjGPAMIJAORRhVXLoJOckXZTyhGiEGDEOqqjvUNDPA1ImFAOdBJyf ckKPmOT5TcBvOH/
ySuASuiozvfMcN3a3hrgqamBpzImE1VEMnmZqwKvRmhoUnyhtCzLms6mf 0ZUImacmpiwESSU/T7wFTYK4pesbzRx IBEF2kro jg2ArWAdKkDgpbpdcOMWPpGzc/Wk+
LkTZVbde7mo2ID1G7WutvPig1Qul0/UFOHVL+wqWpigLJXdtnMICUKKY5sBgAAAAAAAAAAAAAAAP7 ANwE3SLcSCEY2AAAAAELFTkSuQmCC" }

3.2 chai.png
Sample PNG

4|

Sample encoding

Read chai.png, wrote chai.json

SHA—256 hash:
37d8c¢5403d29ec7d6f59b02690414de77b05977352953¢2a00fbeab0b5f79bbb
Going to use 5 CHAI chars or 80 bits.

<U+42615> (base)

<U+D37D8> IMAGE HASH 37D8
<U+DCb540> IMAGE HASH C540
<U+D3D29> IMAGE HASH 3D29
<U+DECTD> IMAGE HASH EC7D
<U+D6F59> IMAGE HASH 6F59

Sample decoding

U+2615 (non—CHAT)

U+D37D8 hash bits: 37D8

U+DC540 hash bits: C540

U+D3D29 hash bits: 3D29

U4DEC7D hash bits: EC7D

U+D6F59 hash bits: 6F59

CHAI Hash: 37D8C5403D29EC7D6F59

The resulting hash matches the first 80 bits of
37d8c5403d29ec7d6£59b02690414de77b0597735a953¢c2a00fbeab0bb£79bb5b

[git] = 28321lec

4 Character Data

This proposal requests a total of 65,536 new characters to be encoded.

4.1 Character Properties

DO000 ; IMAGE HASH 0000;Cf;0;BN;;;;;N;;;;;
DFFFD; IMAGE HASH FFFD;Cf;0;BN;;;;;N;;;;;
EFFFC; IMAGE HASH FFFE;Cf;0;BN;;;;;N;;;;;
EFFFD; IMAGE HASH FFFF;Cf;0;BN;;;;;N;;;;;

4.2 Line Breaking

DO00O. .DFFFD;CM # Cf[65,534] IMAGE HASH
EFFFC. .DFFFD;CM # Cf [2] IMAGE HASH

References

Davis, Mark and Peter Edberg, eds. Unicode Technical Report 51: Unicode Emoji. 2015. URL:
http://www.unicode.org/reports/tr51/.

— eds. Unicode Technical Report 52: Unicode Emoji Mechanisms. 2016. URL: http://www.
unicode.org/reports/tr52/.

Miller, Hannah et al. “‘Blissfully happy’ or ‘ready to fight’: Varying Interpretations of
Emoji”. In: ICWSM ’16 (2016). URL: http://grouplens.org/site-content/uploads/
ICWSM16_Emoji-Final Version.pdf.

Colophon

Repo URL: https://github.com/sr1295/srl-unicode-proposals

Typeset by WTEX. Made with 100% recycled bits. All opinions belong to the authors and do
not reflect the opinions of their associated employers. Thank you to the Computer History Museum
for hosting the “Emoji (and more)” event, where this proposal was originally penned.

[git] = 28321lec

http://www.unicode.org/reports/tr51/
http://www.unicode.org/reports/tr52/
http://www.unicode.org/reports/tr52/
http://grouplens.org/site-content/uploads/ICWSM16_Emoji-Final_Version.pdf
http://grouplens.org/site-content/uploads/ICWSM16_Emoji-Final_Version.pdf
https://github.com/srl295/srl-unicode-proposals
http://www.computerhistory.org
https://www.facebook.com/events/1727012724179335/

	Introduction
	Introduction
	Background

	Proposal
	Representing the emoji
	Secure hash
	Code points allocated to express the secure hash
	Encoding an implementation-defined emoji
	Receiving and rendering a CHAI
	Privacy

	Example
	chai.json
	chai.png

	Character Data
	Character Properties
	Line Breaking

	References

