
Applying Deep Learning To Airbnb Search
Malay Haldar, Mustafa Abdool, Prashant Ramanathan, Tao Xu, Shulin Yang, Huizhong Duan, Qing

Zhang, Nick Barrow-Williams, Bradley C. Turnbull, Brendan M. Collins and �omas Legrand
Airbnb Inc.

malay.haldar@airbnb.com

ABSTRACT
�e application to search ranking is one of the biggest machine
learning success stories at Airbnb. Much of the initial gains were
driven by a gradient boosted decision tree model. �e gains, how-
ever, plateaued over time. �is paper discusses the work done in
applying neural networks in an a�empt to break out of that plateau.
We present our perspective not with the intention of pushing the
frontier of new modeling techniques. Instead, ours is a story of the
elements we found useful in applying neural networks to a real life
product. Deep learning was steep learning for us. To other teams
embarking on similar journeys, we hope an account of our struggles
and triumphs will provide some useful pointers. Bon voyage!

CCS CONCEPTS
•Retrievalmodels and ranking→Learning to rank; •Machine
learning approaches → Neural networks; •Electronic com-
merce→ Online shopping;

KEYWORDS
Search ranking, Deep learning, e-commerce

1 INTRODUCTION
�e home sharing platform at Airbnb is a two sided marketplace for
hosts to rent out their spaces, referred to as listings, to be booked
by prospective guests from all around the world. A typical booking
starts with the guest issuing a search at airbnb.com for homes
available in a particular geographic location. �e task of search
ranking is to respond to the guest with an ordered list of a handful
of listings from the thousands available in the inventory.

�e very �rst implementation of search ranking was a manually
cra�ed scoring function. Replacing the manual scoring function
with a gradient boosted decision tree (GBDT) model gave one of the
largest step improvements in homes bookings in Airbnb’s history,
with many successful iterations to follow. �e gains in online book-
ings eventually saturated with long spells of neutral experiments.
�is made the moment ripe for trying sweeping changes to the
system.

Starting with this background, the current paper discusses our
experiences in transitioning one of the at-scale search engines on
the internet to deep learning. �e paper is targeted towards teams
that have a machine learning system in place and are starting to
think about neural networks (NNs). For teams starting to explore
machine learning, we would recommend a look at [27] as well.

�e search ranking model under discussion is part of an ecosys-
tem of models, all of which contribute towards deciding which
listings to present to the guest. �ese include models that predict
the likelihood of a host accepting the guest’s request for booking,
models that predict the probability the guest will rate the on trip

Figure 1: Example search session

experience 5-star, etc. Our current discussion is focused on one
particular model in this ecosystem. Considered the most complex
piece of the ranking puzzle, this model is responsible for ordering
the listings available according to the guest’s likelihood of booking.

A typical guest search session is depicted in Figure 1. It is com-
mon for guests to do multiple searches, clicking through some of
the listings to view their details page. Successful sessions end with
the guest booking a listing. �e searches performed by a guest
and their interactions are logged. While training, a new model
has access to the logs of the current and previous models used in
production. �e new model is trained to learn a scoring function
that assigns impressions of the booked listings in the logs at as
high a rank as possible, similar to [19]. �e new model is then
tested online in an A/B testing framework to see if it can achieve
a statistically signi�cant increase in conversions compared to the
current model.

An overview of the paper: we start o� with a summary of how
the model architecture evolved over time. �is is followed by fea-
ture engineering and system engineering considerations. We then
describe some of our tooling and hyper-parameter explorations,
�nishing with a retrospective.

2 MODEL EVOLUTION
Our transition to deep learning wasn’t the result of an atomic move;
it was the culmination of a series of iterative re�nements. Figure
2a shows the comparative improvements in our principal o�ine
metric NDCG (normalized discounted cumulative gain), where the
impression of the booked listing is assigned a relevance of 1, and
all other impressions 0 relevance. �e x-axis depicts the models
along with the time they were launched to production.

Figure 2b shows the comparative increase in conversions from
the models. Overall, this represents one of the most impactful
applications of machine learning at Airbnb. �e sections to follow
brie�y describe each of these models.

2.1 Simple NN
Andrej Karpathy has advice regarding model architecture: don’t
be a hero [11]. Well, that’s not how we started. Driven by ”Why

ar
X

iv
:1

81
0.

09
59

1v
2

 [
cs

.L
G

]
 2

4
O

ct
 2

01
8

(a) NDCG gains o�line

(b) Booking gains online
Figure 2: Relative gains across models

can’t we be heroes?”, we started o� with some intricate custom
architectures, only to get overwhelmed by their complexity and
ended up consuming cycles.

�e �rst architecture that we �nally managed to get online was
a simple single hidden layer NN with 32 fully connected ReLU
activations that proved booking neutral against the GBDT model.
�e NN was fed by the same features as the GBDT model. �e
training objective for the NN was also kept invariant w.r.t the GBDT
model: minimizing the L2 regression loss where booked listings are
assigned a utility of 1.0 and listings that are not booked a utility of
0.0.

�e value of the whole exercise was that it validated that the
entire NN pipeline was production ready and capable of serving
live tra�c. Aspects of this pipeline are discussed later under the
feature engineering and system engineering sections.

2.2 Lambdarank NN
Not being a hero got us o� to a start, but not very far. In time we
would adapt Karpathy’s advice to: don’t be a hero, in the beginning.
Our �rst breakthrough came when we combined a NN with the
idea behind Lamdarank [2]. O�ine we were using NDCG as our
principal metric. Lambdarank gave us a way to directly optimize

def apply_discount(x):
'''Apply positional discount curve'''
return np.log(2.0)/np.log(2.0 + x)

def compute_weights(logit_op, session):
'''Compute loss weights based on delta ndcg.
logit_op is a [BATCH_SIZE, NUM_SAMPLES] shaped tensor
corresponding to the output layer of the network.
Each row corresponds to a search and each
column a listing in the search result. Column 0 is the
booked listing, while columns 1 through
NUM_SAMPLES - 1 the not-booked listings.

'''
logit_vals = session.run(logit_op)
ranks = NUM_SAMPLES - 1 -

logit_vals.argsort(axis=1).argsort(axis=1)
discounted_non_booking = apply_discount(ranks[:, 1:])
discounted_booking =

apply_discount(np.expand_dims(ranks[:, 0], axis=1))
discounted_weights = np.abs(discounted_booking -

discounted_non_booking)
return discounted_weight

Compute the pairwise loss
pairwise_loss = tf.nn.sigmoid_cross_entropy_with_logits(

targets=tf.ones_like(logit_op[:, 0]),
logits=logit_op[:, 0] - logit_op[:, i:])

Compute the lambdarank weights based on delta ndcg
weights = compute_weights(logit_op, session)
#Multiply pairwise loss by lambdarank weights
loss = tf.reduce_mean(tf.multiply(pairwise_loss, weights))

Table 1: TensorFlowTM code to adapt pairwise loss to Lambdarank.

the NN for NDCG. �is involved two crucial improvements over
the regression based formulation of the simple NN:

• Moving to a pairwise preference formulation where the
listings seen by a booker were used to construct pairs of
{booked listing, not-booked listing} as training examples.
During training we minimized cross entropy loss of the
score di�erence between the booked listing over the not-
booked listing.

• Weighing each pairwise loss by the di�erence in NDCG
resulting from swapping the positions of the two listings
making up the pair. �is prioritized the rank optimization
of the booked listing towards the top of the search result
list, instead of the bo�om. For example, improving the
rank of a booked listing from position 2 to 1 would get
priority over moving a booked listing from position 10 to
9.

Table 1 shows a partial implementation in TensorFlowTM, in par-
ticular, how the pairwise loss was weighted.

2.3 Decision Tree/Factorization Machine NN
While the main ranking model serving production tra�c was a NN
at this point, we had other models under research. �e notable ones
were:

2

Embedding

q0

q1

L0 L1

Factorization Machine

Other Features

Embedding

FM Prediction

Output Logit

Hidden Relu layer

Gradient Boosted Decision Trees

Figure 3: NN with GBDT tree nodes and FM prediction as features

Figure 4: DNN learning curve

• Iterations on the GBDT model with alternative ways to
sample searches for constructing the training data.

• A factorization machine (FM) [14] model that predicted the
booking probability of a listing given a query, by mapping
listings and queries to a 32-dimensional space.

�ese new ways of looking at the search ranking problem revealed
something interesting: although performances of the alternative
models on test data were comparable to the NN, the listings up-
ranked by them were quite di�erent. Inspired by NN architectures
like [23], the new model was an a�empt to combine the strengths
of all three models. For the FM model we took the �nal prediction
as a feature into the NN. From the GBDT model, we took the index
of the leaf node activated per tree as a categorical feature. Figure 3
gives an overview.

2.4 Deep NN
�e complexity of the model at this point was staggering, and
some of the issues mentioned in [17] begun to rear their heads. In
our �nal leap, we were able to deprecate all that complexity by
simply scaling the training data 10x and moving to a DNN with 2
hidden layers. Typical con�guration of the network: an input layer
with a total of 195 features a�er expanding categorical features to
embeddings, feeding the �rst hidden layer with 127 fully connected
ReLUs, and then the second hidden layer with 83 fully connected
ReLUs.

�e features feeding the DNN were mostly simple properties of
the listings such as price, amenities, historical booking count, etc,
fed directly with minimal feature engineering. Exceptions include
features output from another model:

• Price of listings that have the Smart Pricing feature enabled,
supplied by a specialized model [24].

• Similarity of the listing to the past views of the user, com-
puted based on co-view embeddings [9].

�ese models tap into data that isn’t directly part of the search
ranking training examples, providing the DNN with additional
information.

To take a closer look at the DNN, we plot its learning curve in
Figure 4, comparing NDCG over the training and test data set as a
function of number of training pairs. Training on 1.7 billion pairs,
we were able to close the generalization gap between the training
and the test data set.

Could we have launched the DNN directly, skipping all the stages
of evolution? We try to answer this in the retrospective section,
once more of the context surrounding the model is in place.

As a side note, while DNNs have achieved human level perfor-
mance on certain image applications [21], it is very hard for us to
judge where we stand for a similar comparison. Part of the problem
is that it’s unclear how to de�ne human level performance. Going
through the logs, it’s quite challenging for us to identify which
listing was booked. We �nd no objective truth in the logs, only
tradeo�s highly conditional upon the budget and tastes of the guest
which remain mostly hidden. Other researchers [10] note the di�-
culty in using human evaluation even for familiar shopping items.
For our application these di�culties are further exacerbated due to
the novelty of the inventory.

Speaking of di�culties, next we discuss something rarely talked
about: failed a�empts.

3 FAILED MODELS
�e narrative of one successful launch followed by another pre-
sented in the previous section doesn’t tell the whole story. Reality is
studded with unsuccessful a�empts that outnumber the successful
ones. Retelling every a�empt made would be time consuming, so
we pick two particularly interesting ones. �ese models are interest-
ing because they illustrate how some technique that is very e�ective
and popular in the wild may not work as well when brought home.

3.1 Listing ID
Each listing at Airbnb has a corresponding unique id. One of the ex-
citing new opportunities unlocked by NNs was to use these listing
ids as features. �e idea was to use the listing ids as index into an
embedding, which allowed us to learn a vector representation per
listing, encoding their unique properties. A reason for our excite-
ment was the success other applications had achieved in mapping
such high cardinality categorical features to embeddings, such as
learning embeddings for words in NLP applications [6], learning
embeddings for video and user id in recommender systems [4], etc.

However, in the di�erent variations we tried, listing ids mostly
led to over��ing. Figure 5 plots the learning curve from one such

3

Figure 5: Learning curve with listing id feature

Figure 6: Distribution of views to booking ratio across listings

a�empt, where we saw signi�cant improvement in NDCG on the
training set, but none on the test set.

�e reason why such an established technique fails at Airbnb is
because of some unique properties of the underlying marketplace.
�e embeddings need substantial amounts of data per item to con-
verge to reasonable values. When items can be repeated without
constraints, such as online videos or words in a language, there is
no limit to the amount of user interaction an item can have. Ob-
taining large amounts of data for the items of interest is relatively
easy. Listings, on the other hand, are subjected to constraints from
the physical world. Even the most popular listing can be booked
at most 365 times in an entire year. Typical bookings per listing
are much fewer. �is fundamental limitation generates data that is
very sparse at the listing level. �e over��ing is a direct fallout of
this limitation.

3.2 Multi-task learning
While bookings have a physical limitation, user views of the listing
details pages are not constrained in the same way, and those we
have in spades. Figure 6 shows the distribution of views to bookings
ratio for listings, with bookings typically orders of magnitude more
sparse than views. Taking a step further, we found long views of
listing details pages, unsurprisingly, correlated with bookings.

To tackle the over��ing listing ids, we built a model taking
a page out of the multi-task learning playbook [15]. �e model
simultaneously predicted the probability of booking and long view

Embedding

Continuous Features

Embedding

Booking Logit

Hidden Relu layer

Listing ID Categorical
Features

Long View Logit

Figure 7: Muti-task architecture predicting bookings and views

using two separate output layers; one optimized the loss with the
booked listings as positive labels and the other targeted long views.
Both output layers shared a common hidden layer as shown in
Figure 7. Most importantly, the listing id embedding was shared as
it was in the fan-in of the hidden layer. �e idea was that the model
would be able to transfer its learnings from long views to predict
bookings and avoid over��ing. Since the number of long view
labels outnumbered the booking labels by orders of magnitude, a
compensating higher weight was applied to the booking loss to
preserve focus on the booking objective. �e loss for each long
view label was further scaled by loд(view duration) as proposed
in [25]. For scoring listings online, we used the booking prediction
only.

When tested online, the model increased long views by a large
margin. But bookings remained neutral. Manually inspecting list-
ings which had a high ratio of long views compared to bookings,
we found several possible reasons which could have resulted in this
gap. Such long views could be driven by high-end but high priced
listings, listings with long descriptions that are di�cult to parse,
or extremely unique and sometimes humorous listings, among sev-
eral other reasons. Once again, it is the uniqueness of the Airbnb
marketplace where long views are correlated with bookings, but
have a large orthogonal component as well that makes predicting
bookings based on them challenging. A be�er understanding of
listing views continues to be a topic of research for us.

4 FEATURE ENGINEERING
�e baseline GBDT pipeline we started with had extensive feature
engineering. Typical transformations included computing ratios,
averaging over windows, and other �avors of composition. �e
feature engineering tricks had accumulated over years of exper-
imentation. Yet it was unclear if the features were the best they
could be, or even up to date with the changing dynamics of the mar-
ketplace. A big a�raction of NNs was to bring in feature automation,

4

feeding raw data and le�ing the feature engineering happen in the
hidden units of the NN driven by data.

Yet this section is dedicated to feature engineering, because we
found that making NNs work e�ciently involved a li�le more than
feeding raw data. �is �avor of feature engineering is di�erent
from the traditional one: instead of deriving the math to perform
on the features before feeding them into the model, the focus shi�s
to ensuring the features comply with certain properties so that the
NN can do the math e�ectively by itself.

4.1 Feature normalization
In our very �rst a�empt at training a NN, we simply took all the
features used to train the GBDT model and fed it to the NN. �is
went down very badly. �e loss would saturate in the middle of
training and additional steps would have no e�ect. We traced the
issue to the fact that the features were not normalized properly.

For decision trees, the exact numeric values of the features hardly
ma�er, as long as their relative ordering is meaningful. Neural
networks on the other hand are quite sensitive to the numeric
values the features take. Feeding values that are outside the usual
range of features can cause large gradients to back propagate. �is
can permanently shut o� activation functions like ReLU due to
vanishing gradients [3]. To avoid it we ensure all features are
restricted to a small range of values, with the bulk of the distribution
in the {-1, 1} interval and the median mapped to 0. �is by and
large involves inspecting the features and applying either of the
two transforms:

• In case the feature distribution resembles a normal distri-
bution, we transform it by (f eature val − µ)/σ , where µ
is the feature mean and σ the standard deviation.

• If the feature distribution looks closer to a power law dis-
tribution, we transform it by loд(1+f eature val

1+median).

4.2 Feature distribution
In addition to mapping features to a restricted numerical range, we
ensured most of them had a smooth distribution. Why obsess over
the smoothness of distributions? Below are some of our reasons.

4.2.1 Spo�ing bugs. When dealing with hundreds of millions of
feature samples, how can we verify a small fraction of them are not
buggy? Range checks are useful but limited. We found smoothness
of distribution an invaluable tool to spot bugs as the distribution of
errors o�en stand in contrast to the typical distribution. To give
an example, we had bugs related to currencies in the prices logged
for certain geographies. And for periods greater than 28 days, the
logged price was the monthly price instead of the daily price. �ese
errors showed up as spikes on the initial distribution plots.

4.2.2 Facilitating generalization. Answering exactly why DNNs
are good at generalizing is a complicated topic at the forefront of
research [26]. Meanwhile our working knowledge is based on the
observation that in the DNNs built for our application, the outputs
of the layers get progressively smoother in terms of their distribu-
tions. Figure 8 shows the distribution from the �nal output layer,
while Figure 9 and Figure 10 show some samples from the hidden
layers. For plo�ing the values from the hidden layers, the zeros
have been omi�ed and the transform loд(1 + relu output) applied.

Figure 8: Distribution of output layer.

Figure 9: Example distributions from second hidden layer.

Figure 10: Example distributions from �rst hidden layer.

�ese plots drive our intuition for why DNNs may be generalizing
well for our application. When building a model feeding on hun-
dreds of features, the combinatorial space of all the feature values is
impossibly large, and during training o�en a fraction of the feature
combinations are covered. �e smooth distributions coming from
the lower layers ensure that the upper layers can correctly �inter-
polate� the behavior for unseen values. Extending this intuition
all the way to the input layer, we put our best e�ort to ensure the
input features have a smooth distribution.

How can we test if the model is generalizing well beyond logged
examples? �e real test is of course online performance of the
model, but we found the following technique useful as a sanity
check: scaling all the values of a given feature in the test set, such
as price to 2x, 3x, 4x etc. and observing changes in NDCG. We
found that the model’s performance was remarkably stable over
these values it had never seen before.

Most features a�ained a smooth distribution once debugged
and applied the appropriate normalization. However, for a few
we had to do specialized feature engineering. An example is the
geo location of a listing, represented by its latitude and longitude.
Figure 11a and 11b show the distribution of raw lat/lng. To make
the distribution smooth, instead of raw lat/lng we compute the
o�set from the center of the map displayed to the user. Shown
in Figure 11c, the mass seems concentrated at the center due to
the tail end of maps which are zoomed out a lot. So we take loд()
of the lat/lng o�set, which yields the distribution in Figure 11d.
�is allows us to construct two features with smooth distributions,
Figure 11e and Figure 11f.

To be clear, the raw lat/lng to o�sets from map center transform is
a lossy many-to-one function as it can convert multiple lat/lng to the
same o�set values. �is allows the model to learn global properties
based on distance rather than properties of speci�c geographies.

5

(a) Distribution of raw lat (b) Distribution of raw lng

(c) Heatmap of raw lat/lng o�set (d) Heatmap of log lat/lng o�set

(e) Distribution of log lat o�set (f) Distribution of log lng o�set
Figure 11: Transforming geo location to smoothly distributed features

To learn properties localized to speci�c geographies we use high
cardinality categorical features that we describe later.

4.2.3 Checking feature completeness. In some cases, investigat-
ing the lack of smoothness of certain features lead to the discovery
of features the model was missing. As an example, we had the frac-
tion of available days a listing was occupied in the future as a signal
of quality, the intuition being that high quality listings get sold out
ahead of time. But the distribution of occupancy turned out to be
perplexing in its lack of smoothness, shown in Figure 12a. A�er
investigation we found an additional factor that in�uenced occu-
pancy: listings had varying minimum stay requirements, sometimes
extending to months, due to which they got occupied at di�erent

(a) Distribution of raw occu-
pancy

(b) Distribution of occupancy normal-
ized by average length of stay
Figure 12

Figure 13: Location preference learnt for the query ”San Francisco”

rates. However, we had not added the minimum required stay as
a feature in the model as it was calendar dependent and consid-
ered too complex. But a�er looking at the occupancy distribution,
we added average length of stay at the listing as a feature. Once
occupancy is normalized by average length of stay, we see the distri-
bution in Figure 12b. Some features that lack a smooth distribution
in one dimension may become smooth in a higher dimension. It was
helpful for us to think through if those dimensions were already
available to the model and if not, then adding them.

4.3 High cardinality categorical features
�e over��ing listing id was not the only high cardinality categori-
cal feature we tried. �ere were other a�empts, where true to the
promise of NNs, we got high returns with li�le feature engineering.
�is is best demonstrated by a concrete example. �e preference of
guests for various neighborhoods of a city is an important location
signal. For the GBDT model, this information was fed by a heavily
engineered pipeline, that tracked the hierarchical distribution of
bookings over neighborhoods and cities. �e e�ort involved in
building and maintaining this pipeline was substantial. Yet it didn’t
factor in key elements like prices of the booked listings.

In the NN world, handling this information was simplicity itself.
We created a new categorical feature by taking the city speci�ed in
the query and the level 12 S2 cell [16] corresponding to a listing,
then mapping the two together to an integer using a hashing func-
tion. For example, given the query ”San Francisco” and a listing
near the Embarcadero, we take the S2 cell the listing is situated in
(539058204), and hash {”San Francisco”, 539058204}→ 71829521
to build our categorical feature. �ese categorical features are then
mapped to an embedding, which feed the NN. During training, the
model infers the embedding with back propagation which encodes
the location preference for the neighborhood represented by the
S2 cell, given the city query.

Figure 13 visualizes the embedding values learnt for the query
”San Francisco”. �is matched our own intuitive understanding
of the area: the embedding values not only highlighted the major

6

points of interest in the city, it indicated a preference for locations
a li�le further south into the west bay instead of closer locations
across the bridges that are major tra�c snarls.

5 SYSTEM ENGINEERING
�is section is concerned with speeding up training and scoring. A
quick summary of our pipeline: search queries from a guest hits
a JavaTM server that does retrieval and scoring. �e server also
produces logs which are stored as serialized �ri�TM instances.
�e logs are processed using a SparkTM pipeline to create training
data. Model training is done using TensorFlowTM. Various tools
wri�en in Scala and JavaTM are used for evaluating the models and
computing o�ine metrics. �e models are then uploaded to the
JavaTM server that does retrieval and scoring. All these components
run on AWS instances.

Protobufs and Datasets. �e GDBT model was fed training data
in CSV format, and we reused much of this pipeline to feed the
TensorFlowTM models using feed dict. At �rst glance this seems
like a �non-machine learning� issue, and was quite low in our
list of priorities. Our wake up call came when we found our GPU
utilizations near ∼25%. Most of the training time was spent in pars-
ing CSV and copying data through feed dict. We were e�ectively
towing a Ferrari with a mule. Retooling the pipeline to produce
training data as Protobufs and using Dataset [8] gave a 17x speedup
to training and drove GPU utilization to ∼90%. �is ultimately
allowed us to a�ack the problem by scaling the training data from
weeks to months.

Refactoring static features. A large number of our features were
properties of listings that rarely changed. For instance, location,
number of bedrooms, a long list of amenities, guest rules etc. Read-
ing all these features as part of each training example created an
input bo�leneck. To eliminate this disk tra�c, we used only the
listing id as a categorical feature. All quasi-static listing features
were packed as a non-trainable embedding indexed by the listing id.
For the features that had a mutation over the training period, this
traded o� a small level of noise against training speed. Resident
in the GPU memory, the embedding eliminated multiple kilobytes
of data per training example that used to get loaded from disk via
the CPU. �is e�ciency made it possible to explore a whole new
class of models which took into account �ne details about tens of
listings the user had interacted with in the past.

JavaTM NN library. Towards the beginning of 2017 when we
started shipping the TensorFlowTM models to production, we found
no e�cient solution to score the models within a JavaTM stack.
Typically a back and forth conversion of the data between JavaTM

and another language was required and the latency introduced in
the process was a blocker for us. To adhere to the strict latency
requirement of search, we created a custom neural network scoring
library in JavaTM. While this has served us well till this point, we
expect to revisit the issue to see the latest alternatives available.

6 HYPERPARAMETERS
While there were a few hyperparameters like number of trees, regu-
larization, etc in the GBDT world, NNs take it to a whole new level.
During initial iterations, we spent considerable time exploring this

world mostly driven by anxiety akin to FOMO (fear-of-missing-out).
�e e�ort spent in surveying all the options and experimenting
with the combinations didn’t produce any meaningful improve-
ments for us. However, the exercise did give us some con�dence in
our choices which we describe below.

Dropout. Our initial impression was that dropout is the coun-
terpart of regularization for neural networks [22], and thereby
essential. However for our application, the di�erent �avors of
dropout we tried, all lead to a slight degradation in o�ine metrics.
To reconcile our lack of success with dropout, our current interpre-
tation of it is closer to a data augmentation technique [1], e�ective
when the randomness introduced mimic valid scenarios that may
be missing in the training data. For our case, the randomness was
simply producing invalid scenarios that was distracting the model.

As an alternative, we added hand cra�ed noise shapes taking
into account the distribution of particular features, resulting in an
improvement of ∼1% in o�ine NDCG. But we failed to get any
statistically signi�cant improvement in online performance.

Initialization. Out of sheer habit, we started our �rst model by
initializing all weights and embeddings to zero, only to discover
that is the worst way to start training a neural network. A�er
surveying di�erent techniques, our current choice is to use Xavier
initialization [5] for the network weights and random uniform in
the {-1, 1} range for embeddings.

Learning rate. An overwhelming range of strategies confronted
us here, but for our application we found it hard to improve upon
the performance of Adam [12] with its default se�ings. Currently
we use a variant LazyAdamOptimizer [7], which we found faster
when training with large embeddings.

Batch size. Varying batch size has dramatic e�ect on training
speed, but its exact e�ect on the model itself is hard to grasp. �e
most useful pointer we found was [18]. We however, didn’t quite
follow the advice in the paper. Having swept the learning rate issue
under the LazyAdamOptimizer carpet, we just opted for a �xed
batch size of 200 which seemed to work for the current models.

7 FEATURE IMPORTANCE
Estimating feature importance and model interpretability in gen-
eral is an area where we took a step back with the move to NNs.
Estimating feature importance is crucial in prioritizing engineer-
ing e�ort and guiding model iterations. �e strength of NNs is
in �guring out nonlinear interactions between the features. �is
is also the weakness when it comes to understanding what role a
particular feature is playing as nonlinear interactions make it very
di�cult to study any feature in isolation. Next we recount some of
our a�empts in deciphering NNs.

Score Decomposition. A homegrown partial dependence tool sim-
ilar to [13] was the backbone of feature analysis in the GBDT world.
In the NN world trying to understand individual feature impor-
tance only lead to confusion. Our �rst naive a�empt was to take
the �nal score produced by the network, and try to decompose it
into contributions coming from each input node. A�er looking at
the results, we realized the idea had a conceptual error: there was

7

Figure 14: Comparison of feature distribution for top and bottom ranked list-
ings in test set.

no clean way to separate the in�uence of a particular incoming
node across a non-linear activation like ReLU.

Ablation Test. �is was another simplistic a�ack on the problem.
�e idea here was to ablate the features one at a time, retrain the
model and observe the di�erence in performance. We could then
assign the features importance proportional to the drop in perfor-
mance their absence produced. However, the di�culty here was
that any performance di�erence obtained by dropping a single fea-
ture resembled the typical noise in o�ine metrics observed anyway
while retraining models. Possibly due to non-trivial redundancy in
our feature set, the model seemed capable of making up for a single
absent feature from the remaining ones. �is leads to a Ship-of-
�eseus paradox: can you keep ablating one feature at a time from
the model, claiming it has no signi�cant drop in performance?

Permutation Test. We raised the sophistication in our next at-
tempt, taking inspiration from permutation feature importance
proposed for random forests [20]. We observed the performance of
the model on a test set a�er randomly permuting the values of a
feature across the examples in the test. Our expectation was that
more important a feature, the higher the resulting degradation from
perturbing it. �is exercise however lead to somewhat nonsensical
results, like one of the most important features for predicting book-
ing probability came out to be the number of rooms in a listing.
�e reason was that in permuting the features one at a time, we
had baked in the assumption that the features were independent of
each other, which was simply false. Number of rooms for instance
is closely tied to price, number of guests staying, typical amenities
etc. Permuting the feature independently created examples that
never occurred in real life, and the importance of features in that
invalid space sent us in the wrong direction. �e test however was
somewhat useful in determining features that were not pulling their
weight. If randomly permuting a feature didn’t a�ect the model
performance at all, it was a good indication that the model was
probably not dependent on it.

TopBot Analysis. A homegrown tool designed to interpret the
features without perturbing them in any way provided some in-
teresting insights. Named TopBot, short for top-bo�om analyzer,
it took a test set as input and used the model to rank the listings
per test query. It then generated distribution plots of feature values
from the listings ranked at the top for each query, and compared
them to the distribution of feature values from the listings at the
bo�om. �e comparison indicated how the model was utilizing the

Peak
 Of Optimism

Valley
 Of

 Despair

Plateau
 Of

 Reality

Figure 15: Anatomy of a journey

features in the di�erent value ranges. Figure 14 shows an example.
�e distribution of prices for top ranked listings are skewed to-
wards lower values, indicating the sensitivity of the model to price.
However, the distribution of reviews look very similar when com-
paring top and bo�om ranked listings indicating this version of the
model was not utilizing reviews as expected, providing direction
for further investigation.

8 RETROSPECTIVE
Figure 15 summarizes our deep learning journey so far. Feeding on
the ubiquitous deep learning success stories, we started at the peak
of optimism, thinking deep learning would be a drop in replacement
for the GBDT model and give us stupendous gains out of the box.
A lot of initial discussions centered around keeping everything else
invariant and replacing the current model with a neural network
to see what gains we could get. �is set us up for a plunge into the
valley of despair, when initially none of those gains materialized. In
fact, all we saw in the beginning was regression in o�ine metrics.
Over time we realized that moving to deep learning is not a drop-in
model replacement at all; rather it’s about scaling the system. As
a result, it required rethinking the entire system surrounding the
model. Con�ned to smaller scales, models like GBDT are arguably
at par in performance and easier to handle, and we continue to use
them for focused medium sized problems.

So would we recommend deep learning to others? �at would be
a wholehearted Yes. And it’s not only because of the strong gains
in the online performance of the model. Part of it has to do with
how deep learning has transformed our roadmap ahead. Earlier
the focus was largely on feature engineering, but a�er the move to
deep learning, trying to do be�er math on the features manually
has lost its luster. �is has freed us up to investigate problems at a
higher level, like how can we improve our optimization objective,
and are we accurately representing all our users? Two years a�er
taking the �rst steps towards applying neural networks to search
ranking, we feel we are just ge�ing started.

9 ACKNOWLEDGEMENTS
Most of us have managed to bring down the metrics singlehandedly
at some point. But li�ing the metrics have always been the work of
a collective. While naming everyone individually is not practical,
we wish to thank those who directly worked towards making deep
learning a success at Airbnb - Ajay Somani, Brad Hunter, Yangbo
Zhu and Avneesh Saluja.

8

REFERENCES
[1] Xavier Bouthillier, Kishore Konda, Pascal Vincent, and Roland Memisevic. 2016.

Dropout as data augmentation. In arXiv e-prints.
[2] Chris J.C. Burges. 2010. From RankNet to LambdaRank to LambdaMART: An

Overview. Technical Report. h�ps://www.microso�.com/en-us/research/
publication/from-ranknet-to-lambdarank-to-lambdamart-an-overview/

[3] Djork-Arné Clevert, �omas Unterthiner, and Sepp Hochreiter. 2016. Fast and
Accurate Deep Network Learning by Exponential Linear Units (ELUs). In Pro-
ceedings of International Conference on Learning Representations 2016 (ICLR’16).

[4] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep Neural Networks
for YouTube Recommendations. In Proceedings of the 10th ACM Conference on
Recommender Systems. New York, NY, USA.

[5] Xavier Glorot and Yoshua Bengio. 2010. Understanding the di�culty of training
deep feedforward neural networks. In Proceedings of the �irteenth International
Conference on Arti�cial Intelligence and Statistics (Proceedings of Machine Learning
Research), Yee Whye Teh and Mike Ti�erington (Eds.), Vol. 9. PMLR, Chia Laguna
Resort, Sardinia, Italy, 249–256.

[6] Yoav Goldberg. 2015. A Primer on Neural Network Models for Natural Language
Processing. CoRR abs/1510.00726 (2015). arXiv:1510.00726 h�p://arxiv.org/abs/
1510.00726

[7] Google. 2018. Tensor�ow Documentation: LazyAdamOptimizer.
h�ps://www.tensor�ow.org/versions/r1.9/api docs/python/tf/contrib/opt/
LazyAdamOptimizer

[8] Google. 2018. Tensor�ow Programmer’s Guide: Importing Data. h�ps://www.
tensor�ow.org/programmers guide/datasets

[9] Mihajlo Grbovic and Haibin Cheng. 2018. Real-time Personalization using Em-
beddings for Search Ranking at Airbnb. In Proceedings of the 24th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining.

[10] Shubhra Kanti Karmaker Santu, Parikshit Sondhi, and ChengXiang Zhai. 2017.
On Application of Learning to Rank for E-Commerce Search. In Proceedings
of the 40th International ACM SIGIR Conference on Research and Development
in Information Retrieval (SIGIR ’17). ACM, 475–484. h�ps://doi.org/10.1145/
3077136.3080838

[11] Andrej Karpathy. 2018. CS231n Convolutional Neural Networks for Visual
Recognition. h�p://cs231n.github.io/convolutional-networks/

[12] Diederik P. Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic
Optimization. CoRR abs/1412.6980 (2014). arXiv:1412.6980 h�p://arxiv.org/abs/
1412.6980

[13] Scikit learn Documentation. 2018. Partial Dependence Plots. h�p://scikit-learn.
org/stable/auto examples/ensemble/plot partial dependence.html

[14] Ste�en Rendle. 2012. Factorization Machines with libFM. ACM Transactions on
Intelligent Systems and Technology 3, 3, Article 57 (May 2012), 22 pages.

[15] Sebastian Ruder. 2017. An Overview of Multi-Task Learning in Deep Neural
Networks. CoRR abs/1706.05098 (2017). arXiv:1706.05098 h�p://arxiv.org/abs/
1706.05098

[16] s2geometry.io. 2018. S2 Geometry. Retrieved April 30, 2018 from h�ps://
s2geometry.io

[17] D. Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Dietmar
Ebner, Vinay Chaudhary, Michael Young, Jean-Francois Crespo, and Dan Denni-
son. 2015. Hidden Technical Debt in Machine Learning Systems. In Proceedings
of the 28th International Conference on Neural Information Processing Systems -
Volume 2 (NIPS’15). 2503–2511.

[18] Samuel L. Smith, Pieter-Jan Kindermans, and �oc V. Le. 2017. Don’t De-
cay the Learning Rate, Increase the Batch Size. CoRR abs/1711.00489 (2017).
arXiv:1711.00489 h�p://arxiv.org/abs/1711.00489

[19] Daria Sorokina and Erick Cantu-Paz. 2016. Amazon Search: �e Joy of Rank-
ing Products. In Proceedings of the 39th International ACM SIGIR Conference on
Research and Development in Information Retrieval (SIGIR ’16). 459–460.

[20] Leo Breiman Statistics and Leo Breiman. 2001. Random Forests. In Machine
Learning. 5–32.

[21] Christian Szegedy, Sergey Io�e, Vincent Vanhoucke, and Alexander A. Alemi.
2017. Inception-v4, Inception-ResNet and the Impact of Residual Connections
on Learning. In AAAI.

[22] Stefan Wager, Sida Wang, and Percy Liang. 2013. Dropout Training As Adaptive
Regularization. In Proceedings of the 26th International Conference on Neural
Information Processing Systems - Volume 1 (NIPS’13). Curran Associates Inc., USA,
351–359.

[23] Ruoxi Wang, Bin Fu, Gang Fu, and Mingliang Wang. 2017. Deep & Cross Network
for Ad Click Predictions. In Proceedings of the ADKDD’17 (ADKDD’17). ACM,
New York, NY, USA, Article 12, 7 pages.

[24] Peng Ye, Julian Qian, Jieying Chen, Chen-Hung Wu, Yitong Zhou, Spencer De
Mars, Frank Yang, and Li Zhang. 2018. Customized Regression Model for Airbnb
Dynamic Pricing. In Proceedings of the 24th ACM SIGKDD Conference on Knowl-
edge Discovery and Data Mining.

[25] Xing Yi, Liangjie Hong, Erheng Zhong, Nanthan Nan Liu, and Suju Rajan. 2014.
Beyond Clicks: Dwell Time for Personalization. In Proceedings of the 8th ACM
Conference on Recommender Systems (RecSys ’14). ACM, New York, NY, USA,

113–120. h�ps://doi.org/10.1145/2645710.2645724
[26] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals.

2017. Understanding deep learning requires rethinking generalization. h�ps:
//arxiv.org/abs/1611.03530

[27] Martin Zinkevich. 2018. Rules of Machine Learning. Retrieved April 30, 2018
from h�ps://developers.google.com/machine-learning/rules-of-ml/

9

https://www.microsoft.com/en-us/research/publication/from-ranknet-to-lambdarank-to-lambdamart-an-overview/
https://www.microsoft.com/en-us/research/publication/from-ranknet-to-lambdarank-to-lambdamart-an-overview/
http://arxiv.org/abs/1510.00726
http://arxiv.org/abs/1510.00726
http://arxiv.org/abs/1510.00726
https://www.tensorflow.org/versions/r1.9/api_docs/python/tf/contrib/opt/LazyAdamOptimizer
https://www.tensorflow.org/versions/r1.9/api_docs/python/tf/contrib/opt/LazyAdamOptimizer
https://www.tensorflow.org/programmers_guide/datasets
https://www.tensorflow.org/programmers_guide/datasets
https://doi.org/10.1145/3077136.3080838
https://doi.org/10.1145/3077136.3080838
http://cs231n.github.io/convolutional-networks/
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://scikit-learn.org/stable/auto_examples/ensemble/plot_partial_dependence.html
http://scikit-learn.org/stable/auto_examples/ensemble/plot_partial_dependence.html
http://arxiv.org/abs/1706.05098
http://arxiv.org/abs/1706.05098
http://arxiv.org/abs/1706.05098
https://s2geometry.io
https://s2geometry.io
http://arxiv.org/abs/1711.00489
http://arxiv.org/abs/1711.00489
https://doi.org/10.1145/2645710.2645724
https://arxiv.org/abs/1611.03530
https://arxiv.org/abs/1611.03530
https://developers.google.com/machine-learning/rules-of-ml/

	Abstract
	1 Introduction
	2 Model Evolution
	2.1 Simple NN
	2.2 Lambdarank NN
	2.3 Decision Tree/Factorization Machine NN
	2.4 Deep NN

	3 Failed Models
	3.1 Listing ID
	3.2 Multi-task learning

	4 Feature Engineering
	4.1 Feature normalization
	4.2 Feature distribution
	4.3 High cardinality categorical features

	5 System Engineering
	6 Hyperparameters
	7 Feature Importance
	8 Retrospective
	9 Acknowledgements
	References

