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Abstract

Innovations in neural architectures have fostered significant breakthroughs in lan-
guage modeling and computer vision. Unfortunately, novel architectures often
result in challenging hyper-parameter choices and training instability if the network
parameters are not properly initialized. A number of architecture-specific initial-
ization schemes have been proposed, but these schemes are not always portable
to new architectures. This paper presents GradInit, an automated and architecture
agnostic method for initializing neural networks. GradInit is based on a simple
heuristic; the norm of each network layer is adjusted so that a single step of SGD or
Adam with prescribed hyperparameters results in the smallest possible loss value.
This adjustment is done by introducing a scalar multiplier variable in front of each
parameter block, and then optimizing these variables using a simple numerical
scheme. GradInit accelerates the convergence and test performance of many con-
volutional architectures, both with or without skip connections, and even without
normalization layers. It also improves the stability of the original Transformer archi-
tecture for machine translation, enabling training it without learning rate warmup
using either Adam or SGD under a wide range of learning rates and momentum
coefficients. Code is available at https://github.com/zhuchen03/gradinit.

1 Introduction

The initialization of network parameters has a strong impact on the training stability and performance
of deep neural networks. Initializations that prevent gradient explosion/vanishing in back propagation
played a key role in early successes with feed-forward networks [1, 2]. Even with cleverly designed
initialization rules, complex models with many layers or multiple branches can still suffer from
instability. For example, the original Transformer model [3] does not converge without learning
rate warmup using the default initialization [4–6]; RoBERTa [7] and GPT-3 [8] have to tune the β2
parameter of Adam for stability when the batch size is large. Recent innovations have shown that
architecture-specific initializations, which are carefully derived to maintain stability, can promote
convergence without needing normalization layers [5, 9–12]. Unfortunately, the reliance on analyti-
cally derived initializations makes it difficult to realize the benefits of these methods when performing
architecture search, training networks with branched or heterogeneous components, or proposing
altogether new architectures.

In this work, we propose a simple method for learning the initialization of a network with any
architecture. Typically, initialization schemes draw parameters independently from a zero-mean
distribution, with the variance of each distribution set to pre-determined values depending on the
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dimensions of the layers [1, 2]. Rather than deriving a closed-form expression for the these distribution
parameters, our method re-scales each random weight tensor (e.g. convolution kernels) directly by
a learned scalar coefficient. This small set of coefficients is optimized to make the first step of a
stochastic optimizer (e.g. SGD or Adam) as effective as possible at minimizing the training loss,
while preventing the initial gradient norm from exploding. In addition, this process is designed
to take into account the direction, step size, and stochasticity of the optimizer. Finally, after the
variance has been learned for each parameter tensor, the random network parameters are re-scaled and
optimization proceeds as normal. We empirically find that our methods can make the initialization
fall into a smooth loss region, reduce the inter-sample gradient variance, and accelerates training.

Our proposed method, GradInit, is architecture agnostic, and works with both Adam and SGD
optimizers. In the vision domain, we show it accelerates the convergence and test performance of
a variety of deep architectures, from the vanilla feed-forward VGG net to ResNet, with or without
Batch Normalization. It is efficient and scalable, finding good initializations using less than 1%
of the total training time in our experiments, and it improves the initialization of ResNet-50 on
ImageNet to obtain better final test accuracy. In the language domain, GradInit enables training the
original Transformer model [3] using either Adam or SGD without learning rate warmup for machine
translation, which is commonly acknowledged to be difficult [4, 13]. As an extreme example of the
capabilities of GradInit, we use it to initialize and train a 1202-layer ResNet that achieves significantly
higher test accuracy than ResNet-110, which other initialization methods have failed to achieve.

Finally, by visualizing the initial norms and gradient variances of the weights before and after GradInit
is applied, we show that GradInit is a useful tool for identifying potential causes for instability at
initialization, such as those imposed by normalization layers, and we summarize interesting scale
patterns learned by GradInit that can be helpful for designing better initialization rules.

2 Related Work

Controlling the norms of network parameters at initialization has proven to be an effective approach
for speeding up and stabilizing training. Glorot and Bengio [1] studied how the variance of features
evolves with depth in feed-forward linear neural networks by assuming both activations and weight
tensors are independent and identical random variables. They developed a technique in which the
variance of each filter scales with its fan-in (the number of input neurons). This style of analysis
was later generalized to the case of ReLU networks [2]. These two analyses are most effective for
feed-forward networks without skip connections or normalization layers. Based on the orthogonal
initialization scheme [14], Mishkin and Matas [15] proposed an iterative procedure to rescale the
orthogonally initialized weights of each layer in feedforward networks so that the activations of that
layer have unit variance. However, this method fails to prevent the blowup of activations with depth
for ResNets [16]. Recently, Gurbuzbalaban and Hu [17] proposed initialization schemes such that
the network can provably preserve any given moment of order s ∈ (0, 2] for the output of each layer.
The motivation is that the stochastic gradient updates can result in heavy-tailedness in the distribution
of the network weights with a potentially infinite variance, but finite s-order moment [18]. Again,
these initialization schemes can only be applied for feed-forward neural networks.

For more complex architectures, normalization layers [19, 20] and skip connections [21] stabilized
training dynamics and improved the state-of-the-art. Similarly, learning rate warmup is a common
trick for training large Transformers [3]. These methods make training tractable for some models,
but do not eliminate the high initial gradient variance that destabilizes training when the network is
deep [9–11] or when the normalization layers are not carefully positioned [4].

Several authors have proposed better initializations for networks with skip connections. This is often
achieved by replacing the normalization layers with simpler scaling or bias operations, and scaling
the weight matrices in each layer so that the variance of activations does not increase with depth [9–
12]. Similar analysis has been applied to self attention in Transformers [5]. Without removing the
normalization layers, it is possbile to stabilize the initial parameter updates by introducing carefully
initialized learnable scale factors to the skip connections [6] or the residual branches [22]. However,
such techniques are often restricted to one specific architecture such as ResNets.

Recently, Dauphin and Schoenholz [16] proposed a task-agnostic and automatic initialization method,
MetaInit, for any neural network achitecture. MetaInit optimized the norms of weight tensors to
minimize the “gradient quotient”, which measures the effect of curvature near the initial parameters,
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on minibatches of random Gaussian samples. However, as training data is usually accessible for most
tasks of interest, it is simpler and potentially more efficient to use the training data for initialization.
MetaInit also involves the gradient of a Hessian-vector product that requires computing a “gradient of
the gradient” multiple times in tandem, which is very computationally intensive. Our proposed method
distinguishes itself from MetaInit in the following ways: (i) Our method is more computationally
efficient. MetaInit involves computing third-order derivatives, results in long computing times and
high memory usage. The memory overhead of MetaInit is more of an issue for networks with
normalization layers. For the relatively small-scale CIFAR-10 problem with batch size 64, MetaInit
requires three GPUs (RTX 2080Ti), while the proposed GradInit needs just one. (ii) Our method
takes the stochasticity of minibatches into consideration. MetaInit uses the local curvature evaluated
on a single minibatch, which fails to capture the variance of the loss/gradient between two different
stochastic minibatches. (iii) Our method considers the training dynamics of different optimization
algorithms including the learning rate and the direction of the gradient step, and effectively handles
different optimizers including SGD and Adam.

3 Method

We aim to develop an initialization scheme applicable to arbitrary network architectures. Since
previous works [1, 2, 9, 16, 10, 12] have shown that the initial weight norms effectively control the
initial gradient norm on average, our method rescales the randomly initialized weight matrices using
learnable scale factors.1

Using a small number of gradient descent steps on these scale factors, the proposed GradInit method
chooses the initialization scalars so that the loss after the first gradient step taken by a stochastic
optimizer (SGD or Adam) is as low as possible. The process of learning initialization coefficients
accounts for the chosen learning rate, optimizer, and other parameters. To prevent gradient explosion,
our method enforces a constraint that the gradient norm is no larger than a constant γ.

Note that for scale-invariant weights, e.g., convolution kernels before BN layers, rescaling still
changes their learning dynamics by changing their effective learning rate [23, 24]. Empirically,
GradInit goes beyond simply preventing exploding or vanishing gradients; it also reduces the gradient
variance, making the initialization fall into a smooth loss region with small gradient variance so that
training is fast, see discussion about Figure 1 and comparisons in Figure 2.

3.1 Efficient Learning-based Initialization via Constrained Optimization

We begin by filling all the weight matrices {W1, . . . ,WM} of the network with values drawn from
independent zero-mean Gaussian distributions, except for the scales and biases of the normalization
layers (if any), which are initialized to 1 and 0 respectively. During the initialization process, we keep
{W1, . . . ,WM} constant, but we multiply each Wi with a learnable non-negative scale factor αi
(initialized to 1). After initialization, we rescale the weights by the learned scale factors, and start
training without the learnable scale factors just as normal. We usem = {α1, . . . , αM} to denote the
set of scale factors, and θm = {α1W1, . . . , αMWM} is the set of rescaled weight matrices.

Let L(S;θ) = 1
|S|
∑
x∈S `(x;θ) be the average loss of the model parameterized by θ on a minibatch

of samples S, where |S| is the number of samples in the minibatch. We use gS,θ = ∇θL(S;θ) as a
shorthand for the gradient of θ. During standard training, this gradient is preprocessed/preconditioned
by the optimization algorithm A, and then used to update the network parameters. GradInit solves
the following constrained optimization problem:

minimize
m

L(S̃;θm − ηA [gS,θm ]),

subject to ‖gS,θm‖pA ≤ γ,
(1)

where S and S̃ are two different minibatches, η is a prescribed learning rate for the optimization
algorithm A, pA is the `p-norm associated with A, and γ is the upper bound for the norm. For
the first gradient step, Adam uses A[gS,θm ] = sign(gS,θm) [25], while SGD uses A[g(S;θm)] =

1For convenience, we refer to weight vectors/matrices/tensors as “weight matrices", which includes the scale
vectors of the normalization layers, the bias vectors, the weight matrices of the fully connected layers, and the
convolution kernels.
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γg(S;θm)/‖g(S;θm)‖2. We show how to choose γ and pA without tuning in Section 3.3. We
discuss the formulation of this problem and how to solve it below.

3.2 Solving the Constrained Problem

The problem (1) is solved using a stochastic gradient descent method in which we sample new
mini-batches on each iteration. Since the proposed method uses gradient updates to compute the
initialization, we dub it GradInit. We propose a simple solver to optimize objective (1) in Algorithm 1.
A key feature of our method is that is makes a simple approximation: after gS,θm is computed on
the forward pass of an iteration, we treat A[gS,θm ] as a constant and do not back-propagate through
A[gS,θm ] on the backward pass. We make this choice to keep computing costs low, and because it is
not possible to back-propagate through the non-differentiable sign function for Adam.

Algorithm 1 GradInit for learning the initialization of neural networks.
1: Input: Target optimization algorithm A and learning rate η for model training, initial model parameters θ0,

learning rate τ of the GradInit scalesm, total iterations T , upper bound of the gradient γ, lower bound for
the initialization scalars α = 0.01.

2: m1 ← 1
3: for t = 1 to T do
4: Sample St from training set.
5: Lt ← 1

|St|
∑

xk∈St
`(xk;θmt), gt ← ∇θLt

6: if ‖gt‖pA > γ then
7: mt+1 ←mt − τ∇mt‖gt‖pA
8: else
9: Sample S̃t from training set.

10: L̃t+1 ← 1

|S̃t|

∑
xk∈S̃t

`(xk;θmt − ηA[gt])
11: mt+1 ←mt − τ∇mt L̃t+1

12: Clampmt+1 using α

To enforce the constraint in (1), we test whether the constraint is satisfied after computing g(S;θm).
If not, we take a gradient descent step to minimize ‖g(S;θm)‖pA , which involves computing second
order derivatives. If the constraint is satisfied, then we instead compute a gradient descent step for
the loss. In addition, we set a lower bound α = 0.01 for all αi. We find that this prevents scalars
from landing on small values during minimization and keeps the GradInit optimizer stable. In our
experiments, we find the only layer that ever hit this lower bound is the final FC layer on some
networks (see the figures in Section 4.1). We find this procedure converges reliably within 2000
iterations for ImageNet, and fewer than 400 iterations for CIFAR-10, taking less than 1% of the total
training time on both problems. We also find it works well to set the step size τ to values within the
range between 10−3 and 10−1. During initialization, the gradient norm constraint is satisfied for the
majority of iterations. The choice of γ, pA will be discussed in Section 3.3.

Table 1: Accuracies on CIFAR-10 using
different overlapping ratios of S̃ and S for
GradInit.

Model |S̃∩S|
|S| Acc1 Accbest

VGG-19
w/o BN

(20.03 M)

0 21.9 ± 4.4 94.5 ± 0.1
0.5 29.3 ± 0.6 94.7 ± 0.02
1 28.7 ± 1.0 94.5 ± 0.1

Stochasticity of mini-batching. The objective in (1)
uses two different mini-batches; S is used to compute the
gradient, and S̃ is used to compute the loss. Ideally, S and
S̃ should be independently sampled from the training set to
capture the randomness of the stochastic optimizer. How-
ever, when the network has large initial gradient variance,
the gradients on S and S̃ usually differ a lot, and for S̃,
the gradient update step θm − ηA [gS,θm ] becomes more
similar to adding random perturbations to the parameters.
We find our objective less effective at accelerating conver-
gence in this case, as shown by the first-epoch accuracy (Acc1) in Table 1. On the other hand,
the randomness is not captured if S = S̃, and we find empirically that θm can exploit the loss by
increasing the gradient norm and destabilize training in this case (see Table 8). Without excessive
tuning, we find that we get more reliable behavior for different architectures when S̃ is a mixture
of 50% samples from S and 50% re-sampled training data, and use this setting by default unless
otherwise stated.
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3.3 Setting and Enforcing the Constraint

The constraint in (1) is included to prevent the network from minimizing the loss in a trivial way
by blowing up the initial gradient. In other words, we want the optimizer to achieve small loss by
choosing an effective search direction rather than by taking an extremely large step in a sub-optimal
direction.

Setting pA and γ through first-order approximation. We show that pA and γ can be set easily
with a rule of thumb and without a parameter search. From the first-order approximation, we expect
the first gradient step to result in a change in the loss on S as following:

L(S; θm−ηA[gS,θm ])−L(S; θm) ≈ −ηA[gS,θm ]TgS,θm =

{−η‖gS,θm‖22, if A is SGD,
−η‖gS,θm‖1, if A is Adam.

(2)

To effectively bound the approximated change in Eq. 2, we choose `pA to be the `2 and `1 norm for
SGD and Adam respectively, so when the constraint is satisifed, the maximum change in the loss,
according to our local approximation, is ηγ2 for SGD and ηγ for Adam. We recommend setting γ
such that ηγ2 = 0.1 for SGD and ηγ = 0.1 for Adam. According to the linear approximations, this
limits the gradient magnitude so that the first step of SGD can decrease the loss by at most 0.1. This
simple rule was used across all vision and language experiments.

Why a constraint and not a penalty? Instead of formulating GradInit as a constrained opti-
mization, one can alternatively formulate it as minimizing the objective with a gradient penalty:
minimize

m
L(S̃;θm − ηA [gS,θm ]) + λ‖gS;θm‖pA , where λ > 0 is the penalty strength.

Table 2: Time cost and accuracy (average of 4 runs) for
running one epoch of regularization/constrained form of
GradInit.

Model VGG-19
w/o BN

VGG-19
w/ BN

ResNet-110
w/o BN

ResNet-110
w/ BN

Time (s) 82 vs. 56 100 vs. 62 169 vs. 103 269 vs. 195

λ = 10−4 32.3, 94.6 10.6, 93.1 33.7, 93.9 32.4, 95.2
λ = 10−2 30.4, 94.5 10.4, 93.0 36.7, 94.1 32.6, 95.3
λ = 1 18.2, 74.7 38.5, 95.1 30.7, 94.2 36.5, 95.3
γ = 1 29.3, 94.7 47.8, 95.1 36.2, 94.6 38.2, 95.4

The penalized objective has two drawbacks com-
pared to the constrained one in Eq. 1. First, every
gradient descent step on the penalized objective
involves second-order gradients due to the gra-
dient regularization, while the constrained form
does not need second-order gradients when the
constraint is satisfied. Second, it is difficult to
choose a good λ that works well for all archi-
tectures. By contrast, we set γ by analyzing the
first-order approximation mentioned above, and
find the same γ works well for different archi-
tectures. The results supporting these two points
are given in Table 2.

4 Experiments

We evaluate GradInit on benchmark datasets for image classification and machine translation tasks.
For image classification, five different architectures are evaluated for CIFAR10 [26], and ResNet-50
is evaluated for ImageNet [27]. For machine translation, we use GradInit to find good initializations
for a Post-LN Transformer without any change to its original architecture on IWSLT-14 De-En [28].
We observe that the method can remove the necessity of any form of learning rate warmup for both
Adam and SGD.

We conduct our experiments in PyTorch. We use the fairseq library for machine translation [29]. All
the experiments on CIFAR-10 and IWSLT-14 DE-EN can run with one single NVIDIA RTX 2080 Ti
GPU with 11GB of RAM.

GradInit first initializes the weights using Kaiming initialization [2] for all the Conv and FC layers
for image classification. For machine translation, we use the default Xavier initialization [1]. We
optimize the scale factors {αi} with Adam [30] using the default momentum parameters.

4.1 Image Datasets with Various Architectures

The introduction of Batch Normalization (BN) [19] and skip connections makes it relatively easy to
train common CNNs for image classification to achieve high accuracy. Despite this, we show that
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when the network is very deep, the network is unstable even when both BN and skip connections
are used, and GradInit can significantly improve the stability. The results on CIFAR-10 are given in
Table 3 and results on ImageNet are given in Table 6.

4.1.1 Settings

Architectures. On CIFAR-10, we focus on the feedforward VGG net and the prevalent and powerful
ResNet, with and without BN layers. For networks without BN, we use learnable biases in all
layers. For ResNet, we additionally evaluate a deep 1202-layer version. We give results for other
architectures (Wide ResNet, DenseNet) in Appendix E due to space limits. We compare with four
different methods/settings: 1) Kaiming Initialization [2]; 2) First train the network for one epoch
with a constant learning rate equal to the starting learning rate, labelled as “+1 epoch (Const. LR)" in
Table 3; 3) First train the network for one epoch with a linear warmup learning rate, labbeled as “+1
epoch (Warmup)" in Table 3; 4) MetaInit [16].

On ImageNet, we use the ResNet-50 model [21]. We compare with Kaiming Initialization, FixUp
initialization [9] and MetaInit. For the ResNet-50 without BN, we follow the architecture of FixUp for
fair comparisons, but we still use the original Kaiming initialization as the starting point of GradInit.

Hyperparameters. We set A to SGD and η = 0.1 (the same as the base learning rate) for GradInit
in all image classification experiments. On CIFAR-10, we train networks with a batch size of 128.
We find MetaInit often takes 2 to 3 times as much memory as GradInit. We run GradInit or MetaInit
for one epoch on the data, which takes less than 1% of the total training time. For GradInit, according
to our analysis in Section 3.3, we fix the gradient norm constraint γ = 1 in all these experiments.
Therefore, as in MetaInit, the only hyperparameter that needs to be tuned is the learning rate τ of the
scale factors. We do a grid search on τ in the range [10−3, 10−1], and report the results with the best
average final test accuracy on 4 runs. After GradInit initialization, we use a learning rate of 0.1 and
the cosine annealing learning rate schedule without restart [31] to train the model for 200 epochs,
where the learning rate decays after each iteration and decays to 0 in the last iteration. Due to their
high initial gradient variance (see Figure 6), we have applied gradient clipping (maximum norm is 1)
to all non-BN networks so that they converge without GradInit under the same schedule.

On ImageNet, we train the ResNet-50 model for 90 epochs with a total batch size of 256 on 4 GPUs.
Due to the difference in the library for training and the number of GPUs used, which affects the BN
statistics, our baseline top-1 accuracy of ResNet-50 (w/ BN) on ImageNet is 0.79% lower than [32].
We use SGD with a starting learning rate of 0.1 and decay the learning rate by 10 after the 30th and
60th epoch. We provide additional details in Appendix A.

4.1.2 Results and Analysis

Table 3: First epoch (Acc1) and best test accuracy over all epochs (Accbest) for models on CIFAR-10. We
report the mean and standard error of the test accuracies in 4 experiments with different random seeds. Best
results in each group are in bold.

Model

(# Params)

VGG-19
w/o BN

(20.03M)

VGG-19
w/ BN

(20.04M)

ResNet-110
w/o BN
(1.72M)

ResNet-110
w/ BN

(1.73M)

ResNet-1202
w/ BN

(19.42M)

Kaiming Acc1 29.1 ± 1.5 12.6 ± 0.6 16.1 ± 2.1 23.2 ± 0.9 12.9 ± 2.8
Accbest 94.5 ± 0.1 94.4 ± 0.1 94.2 ± 0.1 95.0 ± 0.2 94.4 ± 0.6

+1 epoch
(Const. LR)

Acc1 37.2 ± 1.1 19.6 ± 4.0 21.0 ± 3.8 32.5 ± 3.8 12.6 ± 2.8
Accbest 94.4 ± 0.1 94.5 ± 0.1 93.9 ± 0.4 94.7 ± 0.3 94.0 ± 0.4

+1 epoch
(Warmup)

Acc1 37.4 ± 1.2 53.5 ± 2.9 19.8 ± 0.5 48.7 ± 1.1 28.1 ± 1.3
Accbest 94.4 ± 0.1 94.7 ± 0.1 94.1 ± 0.1 95.1 ± 0.1 95.4 ± 0.2

MetaInit Acc1 30.5 ± 0.9 35.1 ± 0.6 14.6 ± 2.2 29.0 ± 1.5 11.7 ± 1.6
Accbest 94.6 ± 0.1 94.6 ± 0.1 94.2 ± 0.1 94.8 ± 0.1 95.0 ± 0.5

GradInit Acc1 29.3 ± 0.6 47.8 ± 1.8 36.2 ± 0.8 38.2 ± 0.9 29.0 ± 1.1
Accbest 94.7 ± 0.1 95.1 ± 0.1 94.6 ± 0.1 95.4 ± 0.1 96.2 ± 0.1

GradInit further stabilizes feedforward nets with BN. BN does stabilize VGG-19 and allows
training without gradient clipping, but with an average first-epoch test accuracy of only 12.57 and
an average final test accuracy lower than the version without BN (see Table 3), it does not seem to
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Figure 1: Top row: results of ResNet-110 on CIFAR-10. Bottom row: results of ResNet-50 on ImageNet. Left
two columns: compare the relative cross-batch gradient variance on the training set for the BN and Conv/FC
layers before and after GradInit. Right two columns: weight norms before and after GradInit. Ratio between
points in the same layer reflects the scale factor. Note each of the residual blocks has 2 and 3 Conv and BN
layers for the ResNet-110 and ResNet-50, respectively. The initial relative gradient variance are reduced for all
layers except the final linear layer in both settings. The strategies are similar on two different datasets. Within
each residual block, the last BN layer has the smallest scaling factors, and the scales of all Conv layers are
surprisingly increased. Best viewed in color.

Figure 2: Comparing the convergence of Kaiming Initialization and GradInit on CIFAR-10, for models trained
with SGD (left three) and Adam (right).

eliminate the instability of Kaiming initialization. As shown in Figure 4, its initial gradient variance
is still relatively high compared with GradInit. BN could magnify the gradient variance when the
variance of its input features (in the forward pass) is smaller than 1 (see Appendix C). GradInit
reduces the gradient variance by 4 orders of magnitude compared to Kaiming initialization , resulting
in significantly higher test accuracy after the first epoch (47.79% vs. 12.57%), which also has an
impact on the final test accuracy (95.13% vs. 94.41%). The reduction in gradient variance is achieved
mainly by scaling down the weights of the final FC layer and the last 2 BN layers, so that the variance
of the activations is reduced in the forward pass. This learned behavior is consistent with the strategy
of FixUp, where the final FC layer is initialized to 0. Another source of gradient variance reduction is
achieved by increasing the weight norms of the remaining Conv and BN layers, so that the variance
of the inputs to the BN layers is increased and the gradient magnifying effect of BN is alleviated in
the backward pass. This reduced the ratio σ(g1)/σ(g16) from 204.9 to 164.8 for the Conv layers
in Figure 4. By contrast, FixUp only reduces the weight norms, which may not always be the best
solution for networks with normalization layers.

Deep residual networks still need better initializations. We also gain significant improvements
from GradInit for ResNet-110 and ResNet-1202. In ResNets, the skip connections cause the variance
of activations to accumulate as the ResNet goes deeper, even for the version with BN [10]. This issue
is more significant when the ResNet scales to 1202 layers, from which we can see that with Kaiming
initialization, the first-epoch accuracy of ResNet-1202 is quite low, and the final test accuracy is even
worse than the shallower ResNet-110, matching the observations of He et al. [21]. Warmup is even
more effective than MetaInit at accelerating the convergence and improving the final test accuracy
of ResNet-1202, but GradInit still outperforms its final test accuracy by 0.8%, and the resulting
ResNet-1202 finally achieved higher accuracy than ResNet-110.

The learned layer-wise rescaling patterns of GradInit are even more interesting for ResNets with BN.
For ResNets with BN, recall that we have two Conv layers and two BN layers in each residual block.
As shown in Figure 1, GradInit learns to increase the weight norms of all the linear layers except for
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the final FC layer, instead of decreasing as for the case without BN (see Figure 6). A more unique
pattern is the collaborative behavior of the BN weights, where the second BN in each residual block is
usually scaled down while the first BN is always scaled up. In deeper layers, the joint effect of these
two BN weights is to downscale the activations and reduce their variance in the forward pass, with a
more significant reducing effect as the layers get deeper. Intuitively, the marginal utility of adding a
new layer decreases with depth. Therefore, for deeper layers, GradInit learns to further downscale the
residual branch, and prevents the variance from increasing too much in the forward pass. Inside each
residual block, increasing the scale factors of the first BN helps to reduce the magnification effect
of the second BN on the gradient; forcing the input activations to the second convolution to have
variance larger than 1 ensures its variance after the following convolution layer does not go below 1,
avoiding the magnification effect that the second BN has on the gradient variance. See Appendix C
for more discussions about the magnifying effect.

Table 4: Comparing the results of GradInit with fixed BN scale parameters (Fix BN) and only rescale the BN
parameters (Only BN).

Kaiming GradInit GradInit (Fix BN) GradInit (Only BN)
Model Acc0 Accbest Acc0 Accbest Acc0 Accbest Acc0 Accbest

VGG-19 (w/ BN) 12.6 ± 0.6 94.4 ± 0.1 47.8 ± 1.8 95.1 ± 0.1 13.1 ± 0.9 94.6 ± 0.1 14.4 ± 2.1 94.4 ± 0.1
ResNet-110 (w/ BN) 23.2 ± 0.9 95.0 ± 0.2 38.2 ± 0.9 95.4 ± 0.1 24.7 ± 3.1 94.7 ± 0.3 25.4 ± 3.1 94.6 ± 0.3

Table 5: Comparing the results with multiplying each weight matrix with a learnable scaler (Learning Scalars)
on CIFAR10. The VGG-19 model is not able to converge unless we reduce the initial learning rate to 0.01,
which obtained worse final accuracy. The ResNet-110 model’s Acc0 was 10% for 2 of the 4 runs.

Model Learning Scalars GradInit
Acc0 Accbest Acc0 Accbest

VGG-19 (w/ BN, lr=0.1) 10.0 ± 0.0 10.0 ± 0.0 47.8 ± 1.8 95.1 ± 0.1
VGG-19 (w/ BN, lr=0.01) 50.6 ± 0.8 93.4 ± 0.1 - -
ResNet-110 (w/ BN) 21.5 ± 6.9 94.7 ± 0.1 38.2 ± 0.9 95.4 ± 0.1

Generalizing to Adam. Models in previous experiments are trained with SGD. We also consider the
case when A is Adam and use AdamW [33] to train the ResNet-110 (w/ BN) model on CIFAR-10.
Following [34], we use a cosine annealing learning rate schedule with initial learning rate 3× 10−3

and weight decay 0.2. For GradInit, we set γ = 25. The Acc1 and Accbest of Kaiming initialization
and GradInit are (36.6 ± 4.7, 94.9 ± 0.1) and (40.2 ± 0.2, 95.3 ± 0.1), respectively. We also show
the per-epoch test accuracy in Figure 2.

The importance of rescaling BN layers. The scale parameters of BN layers usually controls the
variance of activations and gradients in the forward and backward passes, while the linear layers right
before the BN layers are scale-invariant. Although changing the magnitudes of the scale-invariant
layers affect their learning dynamics [23, 24], we find it important for GradInit to rescale both BN
and other linear layers, as shown in Table 4.

The importance of GradInit’s objective. GradInit is designed to rescale the layers to solve the
constrained optimization problem in Eq. 1. Simply letting the model to learn to rescale the layers
cannot improve the results, and sometimes further causes instability, as shown in Table 5. We
hypothesize that the bad results with VGG are due to a mismatch between the scales/norms of the
gradients of the scalars and the weights. To make this alternative work, we may need to set different
learning rates for the scalars and the weights, which adds to the difficulty of hyperparameter tuning.
Note we do not learn the scalars when training networks initialized by GradInit.

Table 6: Acc1/Accbest of ResNet-50 models on ImageNet. Result of MetaInit comes from Dauphin and
Schoenholz [16] and we reimplemented the rest.

Kaiming FixUp MetaInit GradInit

w/ BN 14.6/75.9 - - 19.2/76.2
w/o BN - 18.0/75.7 -/75.4 19.2/75.8

GradInit scales to ImageNet. As shown in Table 6, GradInit also accelerates convergence and
improves test accuracy of ResNet-50 on ImageNet, with or without BN layers, despite having to
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use a smaller batch size for GradInit than training due to our GPU memory limit. The acceleration
achieved by GradInit is even more significant than FixUp, even on the network with the architecture
designed for the initialization.

4.2 Training the Original Transformer Model without Warmup

For a Transformer model to converge, either an explicit or implicit learning rate warmup stage
is needed, especially for the original Transformer architecture. It is observed that this Post-LN
architecture tends to outperform the Pre-LN model [6] while having higher gradient variance at
initialization [4]. Is it believed that this high variance makes a warmup stage inevitable. Previous
works that removes the warmup stage often involves architectural changes, e.g., removing Layer
Normalizations, since it can surprisingly cause instability [4]. Here, we show that with a proper
initialization, we can do away with the warmup stage for the original Post-LN Transformer without
any modification to the architecture. Table 7 summarizes the architectural changes and best results of
methods for improving the initialization of Post-LN Transformers. We compare the stability of the
GradInit and Admin initialization methods without warmup in Figure 3.

Table 7: A comparison of GradInit with with the results from the papers (top 4 rows), and our reimplementation
of Admin for training the Post-LN Transformer model on the IWSLT-14 De-EN dataset. “Standard" refers to
training with standard initialization and warmup.

Method Remove LN wskip Warmup Optimizer BLEU

Standard [6] X RAdam 35.6
FixUp [9] X X Adam 34.5
T-FixUp [5] X Adam 35.5
Admin [6] X RAdam 35.7

Admin X Adam 36.1
Admin X SGD 33.7
GradInit X Adam 36.0
GradInit Adam 36.1
GradInit SGD 35.6

Dataset, Architecture, & Hyperparameters.

IWSLT’14 DE-EN [28] is a German to English translation dataset that has 160k training examples.
Our Transformer model is inherited from [3], which is a Post-LN Transformer placing its Layer
Normalization after the summation of the skip connection and the residual branch. It has a 512-
dimensional word embedding layer and 1024 dimensions in its hidden FFN layer. We also apply
GradInit to the variant from Admin [6], where a learnable vector wskip is element-wise multiplied
with each dimension of the skip connection, but we initialize it to 1 for GradInit. Please refer to [6] for
how Admin initializes these weights. Following [6], we use a linearly decaying learning rate schedule
that decays from the maximum learning rate ηmax to 0 as the model trains for 100K iterations. For
training with SGD, we set the prescribed learning rate ηmax = 0.15, and use η = 0.15, γ = 1 for
GradInit. We do a grid search on ηmax for Admin and report its best result in Table 7. For training
with Adam, we set η = 5× 10−4, γ = 103 for the objective of GradInit, so that ηγ is O(10−1) as
discussed in Section 3.3. We train the initialized model ηmax and β2 as listed in Figure 3. We evaluate
the BLEU score every epoch, and report the best BLEU scores throughout training for each run. For
GradInit, we set the maximum number of iterations T to 780. By comparison, the warmup stage
usually takes 4000 iterations, and we find that if we use 780 steps for warmup, the model does not
converge with ηmax ≥ 3× 10−4. For ηmax = 2× 10−4 with 780-step warmup, the BLEU score is
35.4, worse than GradInit’s 36.0, showing the advantage of GradInit against warmup.

Stability after removing warmup for Adam. In Figure 3, the training process becomes more
unstable as β2 grows larger. From the analysis of RAdam [35], this is because the variance of the
gradient has a stronger impact on the adaptive learning rate when β2 is closer to 1. Therefore, the
largest β2 < 1 that maintains the performance of the trained model reflects the stability of the initial-
ization. We can see GradInit results in more stable models than Admin in general, though their best
performance numbers are almost the same. In addition, we find wskip can help stabilize training in
extreme hyper parameter settings, e.g., at ηmax = 5×10−4 and β2 = 0.995 in Figure 3, GradInit with
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wskip obtains a good average BLEU score of 36.0, while without wskip only succeeded in obtaining
a BLEU score > 35 for one out of four experiments, resulting in an average BLEU score of 8.9.

0.98 0.99 0.995

2× 10−4

3× 10−4

4× 10−4

5× 10−4

35.4 35.4 35.5

35.8 35.9 35.9

36.1 36.1 27.1

0.4 0.4 0.2

Admin (w/ wskip)

0.98 0.99 0.995

35.3 35.3 35.3

35.7 35.8 35.7

36.0 36.0 35.9

35.9 36.0 36.0

GradInit (w/ wskip)

0.98 0.99 0.995

35.3 35.5 35.4

35.8 35.9 35.7

35.9 36.0 36.0

35.6 36.1 8.9

GradInit (w/o wskip)

34.0

34.5

35.0

35.5

36.0

Figure 3: BLEU scores for the Post-LN Transformer
without learning rate warmup using Adam on IWSLT-14
DE-EN under different learning rates ηmax (y axis) and
β2 (x axis). Each result is averaged over 4 experiments.

We also find the network is unable to be trained
without learning rate warmup if we just fix
wskip to its initial value given by Admin and
leave the initialization of other parameters un-
changed. Nevertheless, with GradInit, we do
not need to modify the architecture of Post-LN
Transformer to obtain the same good result as
Admin. For a closer look at the stabilization
mechanism, we show the weight norms and gra-
dient variance at initialization of the original
Post-LN architecture using GradInit and Xavier
initialization in Figure 9 of the Appendix. For
Xavier initialization, the gradient variance is rel-
atively higher for all encoder layers, so Gra-
dInit downscales the encoder layer weights more
in general. For the LN weights, GradInit only
downscales the final LN of both the encoder and decoder, which reduces the variance of the encoder
and decoder during the forward pass. Another strategy GradInit learns is to downscale the weights
of the output projection and the FFN layers, so that the residual branch is relatively down-weighted
compared with the skip connection, similar to Admin.

Removing warmup without architectural change. Another widely observed phenomenon is that
adaptive methods such as Adam seem to be much better than SGD for training Transformer-based
language models [13]. Table 7 shows that, with GradInit, we can find a good initialization for the
Post-LN Transformer on IWSLT-14 DE-EN that trains using SGD without learning rate warmup nor
gradient clipping, and achieves performance close to Adam trained using the same type of learning
rate schedule. By comparison, Admin also makes the Transformer trainable with SGD, but the BLEU
score is lower than the one initialized with GradInit. By comparing Figures 9 and 10 in the Appendix,
we find GradInit for Adam and SGD adopts different rescaling patterns, with the Adam version
depending more on downscaling the residual branches through the FFN and output projection layers
than the SGD version, and the SGD version downscaling more in the final FFN block of the decoder.
This highlights the importance of considering the optimization algorithm A in GradInit, and also
indicates the presence of different ways to reduce the initial gradient variance.

5 Conclusion

In this paper, we propose GradInit, a gradient-based initialization scheme for any architecture.
GradInit reinitializes a network by learning a scale factor for each randomly initialized parameter
block of a network, so that the training loss evaluated on a different minibatch after one gradient step
of a specific stochastic optimizer is minimized. Such a design takes the stochasticity, the learning
rate, and the direction of the optimizer into account, allowing us to find better initializations tailored
for the optimizer. The initialization learned by GradInit often decreases the gradient variance for
most of the parameter blocks. We show that GradInit accelerates the convergence and improves the
test performance of a variety of architectures on image classification. It also enables training the
Post-LN Transformer without any form of learning rate warmup, even for SGD. GradInit can be
a useful tool in the future discovery of better neural architectures that are otherwise discarded due
to poor initializations. By analyzing the learned scaling coefficients and their impact on gradient
variance, it can also serve a guide to design better initialization schemes for complex architectures to
shorten the training schedule and save energy.
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GradInit: Learning to Initialize Neural Networksfor
for Stable and Efficient Training

(Appendix)

A Experimental Details

A.1 On CIFAR-10

Architectures. The base architectures include a popular variant of VGG-19 [36] with BN for
CIFAR-10, which includes all the sixteen convolutional layers but only one fully connected layer;
a ResNet-110 [21] with base width 16 and two Conv layers in each residual block, as well as its
1202-layer verison with the same depth configurations as FixUp; a 28-layer Wide ResNet [37] with
Widen Factor 10 (WRN-28-10) ; and a DenseNet-100 [38]. To isolate the effect of BN, we also
consider removing the BN layers from these three networks and adding learnable bias parameters
in their place. To compare with a strong initialization scheme that is tailor-made for an architecture
family, we consider a 110-layer FixUpResNet [9]. FixUpResNet removes the BN from ResNet,
replacing it with bias parameters and a learnable scale parameter after the second convolutional layer
of each block. FixUp initializes the weights of the second convolutional layer in each residual block,
and of the final fully connected layer, to zero. It also scales the first convolutional layer in each
residual block by 1/

√
M . This causes the gradient to be zero in the first step for all layers except

for the final FC layer. When testing GradInit on this architecture, we adopt the non-zero Kaiming
initialization to all convolutional and FC layers. The results are given in Table 10.

Additional Training Hyerparameters. We use batch size 128 to train all models, except for
DenseNet-100, where the recommended batch size is 64.2 We use random cropping, random flipping
and cutout [39] for data augmentation. We do not use dropout in any of our experiments. We set
weight decay to 10−4 in all cases.

Configurations for GradInit. As in Algorithm 1, each scale factor is initialized to 1 and we set
lower bounds α = 0.01. For each architecture, we try τ from {10−3, 2× 10−3, 5× 10−3, 10−2, 2×
10−2, 5×10−2, 10−1}, and report the results of 4 runs with the best τ . We find the best τ for VGG-19
(w/o BN), VGG-19 (w/ BN), ResNet-110 (w/o BN), ResNet-110 (w/ BN), FixUpResNet, DenseNet-
100 (w/o BN), DenseNet-100 (w/ BN) are 10−2, 10−1, 5×10−2, 5×10−3, 2×10−2, 5×10−3, 10−2

respectively.

A.2 On ImageNet

We use random cropping and flipping as data augmentation. For experiments without BN, we
additionally apply MixUp [40] with α = 0.7 for all models, for fair comparisons FixUp. We train the
models for 90 epochs and decay the learning rate by a factor of 10 every 30 epochs. To fit into the
memory, we use a batch size of 128 for GradInit.

We simply run GradInit for 2000 iterations, which is less than half an epoch. Considering ImageNet
and CIFAR-10 has 1000 and 10 classes respectively, the cross entropy loss of a random guess on
ImageNet is 3 times as large as the loss on CIFAR-10, so a proper initial gradient norm for ImageNet
may be 3 times as large as that for CIFAR-10. Therefore, we set γ = 3 for ImageNet. Since τ = 10−2

worked the best for ResNet-110 (w/ BN) on CIFAR-10, we tried τ ∈ {1 × 10−3, 3 × 10−3, 5 ×
10−3, 10−2} on ImageNet, and chose τ = 3 × 10−3, which maximizes the test accuracy of first
epoch.

A.3 On Machine Translation

For training with SGD, we fix the momentum to 0.9, and did a grid search fo the prescribed learning
rate ηmax from 0.05 to 0.2 just to present its best result. During this grid search process, we set the η
of GradInit to η = ηmax We find using ηmax = 0.15 gives the best results, though the model with
ηmax obtained a similar BLEU of 35.4. We also set η = 0.15, γ = 1 for GradInit in this case. We did

2https://github.com/gpleiss/efficient_densenet_pytorch
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a grid search on learning rates from {0.01, 0.025, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1} for Admin. We
find it achieves the best result with learning rate 0.06, and diverges when ηmax > 0.06. For training
with Adam, we set η = 5 × 10−4 for the objective of GradInit, and tried ηmax and β2 as listed in
Figure 3. We evaluate the BLEU score every epoch, and report the best BLEU scores throughout
training for each method. For GradInit, we set the maximum number of iterations T to 780. By
comparison, the warmup stage usually takes 4000 iterations. As discussed in Section 3.3, we also set
γ = 103.

B Mini-batching, continued: Choice of S̃

Model
(#Params) r = |S̃ ∩ S|/|S| τ ‖g‖2 Acc0 Accbest

VGG-19
w/ BN

(20.04 M)

0.5 4× 10−3 8.63 ± 0.20 38.37 ± 1.45 94.78 ± 0.08
1 1× 10−4 11.56 ± 0.05 13.81 ± 2.47 94.45 ± 0.07
1 4× 10−3 190.62 ± 7.65 10.30 ± 0.15 93.70 ± 0.17

Table 8: Using GradInit without the gradient norm constraint with different overlapping ratios r to
initialize and train a VGG-19 (w/ BN). For both r = 0.5 and r = 1, we tried τ from the range of
1× 10−4 to 2× 10−2. The first two rows show the results with the best final test accuracy Accbest
among different τ ’s, while the last row shows using a larger τ for r = 1.

The choice of S̃, the minibatch on which the objective L(S̃;θ − ηA[g(S; g)]) is evaluated, has great
influence on the results. We have chosen S̃ to have 50% of its samples from S to reduce the variance
of the objective. If S̃ is a completely new batch, i.e., the overlapping ratio r = |S̃ ∩ S|/|S| is 0, then
it becomes difficult for GradInit to work with some models with high initial gradient variance. On the
other hand, when we use the same minibatch (S̃ = S), the objective does not capture the stochasticity
of the optimizer A and can cause undesirable results in some cases. We study the effect of different
choices of S̃ through VGG-19 networks on CIFAR-10. We consider two settings.

In the first setting, we evaluate VGG-19 (w/o BN) initialized with GradInit using different overlapping
ratios of S and S̃. The results are given in Table 8. As we have shown in Figure 6, VGG-19 (w/o
BN) has high initial gradient variance. When r = 0, sometimes the test accuracy after the first epoch
is only 10%, which is worse than the baseline without GradInit. This indicates when r = 0, the
high variance of L(S̃;θ − ηA[g(S; g)]) hinders the effectiveness of GradInit. When r = 1, GradInit
does effectively reduce the initial gradient variance, achieving lower variance in the first-epoch test
accuracy (Acc0) and higher final test accuracy (Atest) than the baseline (Kaiming Initialization in
Table 3), but the result is not as ideal as using r = 0.5. We leave more fine-grained evaluation on the
choice of overlapping ratio r as future work.

In the second setting, we consider removing the gradient norm constraint of GradInit (by setting
γ to ∞) while using overlapping ratios r = 1 and r = 0.5 respectively for a VGG-19 (w/ BN)
model. We remove the gradient norm constraint to highlight the different degrees of reliance of
the two approaches on the gradient constraint. As shown in Table 8, when r = 1, we have to use
the smallest τ , which results in minimum change to the scale factors, to obtain results that are not
significantly worse than the baseline (Kaiming initialization listed in Table 3). It is easy for these
large over-parameterized models to overfit a single minibatch with the scale factors. When r = 1,
GradInit learns a greedy strategy, which increases the gradient as much as possible to enable a steeper
descent that sometimes can reduce the loss on the same minibatch by more than 50% in just one
iteration. The greedy strategy tends to blow up of the gradient norm at initialization, which hinders
convergence and results in a higher dependence on the gradient norm constraint γ. However, when
we use τ = 0.5, GradInit is able to improve the baseline without any gradient norm constraint.

C Magnification Effect of BN

Intuitively, if we stop the gradient passing through the mean and bias of the BN layer during
backpropagation, the BN layer will magnify the gradient variance when the variance of its input
features is smaller than 1 in the forward pass. Here we show its magnification effect analytically for
the practical case where the gradient is not stopped for the mean and bias of the BN layer. From
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the input to the output, the layers are usually ordered as Linear, BN, Activation. Without loss of
generality, we assume the linear layer before BN is X = ZW + b, where the output features
X = [x1, ...,xn]

T ∈ Rn×d, the input activations Z ∈ Rn×k, n is the number of samples and d, k
are the dimension of each feature vector. Batch Normalization normalizes each activation vector xi
as following

yi = γ
xi − µ√
σ2 + ε

+ β, (3)

where all operators are element-wise, γ,β ∈ Rd are learnable parameters usually initialized to 1 and
0 respectively, ε > 0 is a small constant for numerical stability, and

σ2 =
1

n

n∑
i=1

(xi − µ)2,µ =
1

n

n∑
i=1

xi. (4)

For most initialization schemes, b is initialized to 0. ε is often small and ignorable. Under these two
assumptions, each yi is invariant to the rescaling ofW . RescalingW changes the scale of xi, σ and
µ homogeneously. Therefore, among all the parameters of the network, if we only change W by
rescaling it into αW (α > 0), then yi does not change, and consequently, Var[yi], ∂L∂yi

and Var[ ∂L∂yi
]

do not change, but σ2 becomes α2σ2. To see the magnification effect on the gradient variance during
backward propagation, we first find the relation between ∂L

∂yi
and ∂L

∂(αxi)
under different scales α. In

fact,

∂L

∂(αxi)
=

γ

n
√
α2σ2 + ε

n ∂L
∂yi
−

n∑
j=1

∂L

∂yj
− yi − β

γ

n∑
j=1

∂L

∂yj
· yj − β

γ

 , (5)

where, again, all operations are element-wise. Therefore, when α is larger, the variance of the input
feature α2σ2 is larger, and the gradient variance becomes smaller after propagated through this
BN layer. Since Z remains the same, Var

[
∂L
∂W

]
becomes smaller. This explains why GradInit

learns to enlarge the weights of Conv layers in the VGG-19 (w/ BN) experiments. Further, to
simplify the analysis and show its magnification effect on gradient variance when α2σ2 < 1, let
γ = 1,β = 0, and we assume each dimension of ∂L

∂yi
is i.i.d., and yi is independent from ∂L

∂yi
, which

is not necessarily a stronger assumption than [1, 2], then

Var

[
∂L

∂(αxi)

]
=

1

n2(α2σ2 + ε)
Var

n ∂L
∂yi
−

n∑
j=1

∂L

∂yj
− yi

n∑
j=1

∂L

∂yj
· yj


=

1

n2(α2σ2 + ε)
Var

(n− 1− y2
i )
∂L

∂yi
−

n∑
j=1,j 6=i

(1 + yiyj)
∂L

∂yj


≥ 1

n2(α2σ2 + ε)

(n− 1)2Var

[
∂L

∂yi

]
+

n∑
j=1,j 6=i

Var

[
∂L

∂yj

]
=

n(n− 1)

n2(α2σ2 + ε)
Var

[
∂L

∂yi

]
,

(6)

where the inequality comes from the assumption that yi is independent from ∂L
∂yi

and the fact that
Var[(X + a)Y ] ≥ Var[X] + a2Var[Y ] (a is a constant ) when X,Y are independent, and the last
equality comes from the i.i.d. assumption. Therefore, if ε is ignorable and α2σ2 < n(n−1)

n2 , we will
have

Var

[
∂L

∂(αxi)

]
> Var

[
∂L

∂yi

]
, (7)

i.e., the BN layer magnifies the gradient variance when α2σ2 is small.

D Improved Implementation of MetaInit

MetaInit was originally designed to be task-agnostic, and learns to initialize the network with random
samples as inputs. Here, for fair comparisons, we also feed training data to MetaInit, as this should
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intuitively improve MetaInit for the specific task, and use Adam with the same gradient clipping to
optimize the weight norms for MetaInit. Originally, MetaInit [16] uses signSGD with momentum [41],
but we found using Adam with the hyperparameters above can give better results for MetaInit. Table 9
shows the comparison before and after the changes.

Table 9: Acc1, Accbest for different versions of MetaInit (4 runs). “rand.": using random data. “real":
using real data.

config vgg19 w/o BN vgg19 w/ BN res.110 w/o BN res.110 w/ BN
rand. + signSGD 29.08, 94.36 15.62, 94.53 15.91, 93.91 24.47, 94.93
real + signSGD 30.89, 94.41 16.58, 94.46 16.21, 94.29 26.28, 94.95
real + Adam 30.48, 94.62 35.09, 94.64 14.55, 94.19 29.00, 94.76

E Additional Experimental Results

We give additional results on WRN-28-10, FixUpResNet and DensetNet-100 on CIFAR-10 in
Table 10.

Table 10: First epoch (Acc1) and best test accuracy over all epochs (Accbest) for models on CIFAR-10. We
report the mean and standard error of the test accuracies in 4 experiments with different random seeds. Best
results in each group are in bold. For WRN, we have additionally used MixUp during training to enhance the
results, but we do not consider mixup for GradInit to test its transferability to different training regularizations.
Its result with MetaInit comes from the MetaInit paper.

Model

(# Params)

WRN-28-10
w/ BN

(36.49M)

FixUpResNet
N/A

(1.72M)

DenseNet-100
w/o BN
(0.75M)

DenseNet-100
w/ BN

(0.77M)

Kaiming Acc1 43.1 ± 2.7 38.2 ± 0.8 35.5 ± 0.6 51.2 ± 1.5
Accbest 97.2 ± 0.1 95.4 ± 0.1 94.0 ± 0.1 95.5 ± 0.1

MetaInit Acc1 - 21.5 ± 0.6 35.1 ± 0.2 46.7 ± 4.0
Accbest 97.1 95.0 ± 0.1 94.4 ± 0.1 95.5 ± 0.1

GradInit Acc1 46.3 ± 0.4 35.0 ± 0.7 37.2 ± 1.1 58.2 ± 0.9
Accbest 97.3 ± 0.1 95.4 ± 0.1 94.9 ± 0.1 95.5 ± 0.1

F Weight norms and gradient variances

In this section, we give weight norms and gradient variances before and after GradInit is applied on
various datasets and networks. We consider DenseNet-100 (w/o BN) and DenseNet-100 (w/ BN) on
CIFAR-10 in Figure 7 and Figure 8, as well as ResNet-50 on ImageNet in Figure 2. We also compare
the weight norms and gradient variances of the Post-LN Transformer model initialized using GradInit
with A set to Adam and SGD respectively in Figure 9 and Figure 10.
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Figure 4: Averaged per-dimension weight magnitudes (‖Wi‖/di) and standard deviation of their gradient
(σ(gi)) for each layer i of the VGG-19 (w/ BN) on CIFAR-10. The ratio between the weight magnitudes of
GradInit and Kaiming Initialization is the learned scale factor of GradInit in each layer. The standard deviation
is computed over the minibatches, with a batch size of 128, with the BN in its training mode. This VGG-19
on CIFAR-10 has only one FC layer, but it has the same number of convolutional layers (16) as its ImageNet
version. All the weights are indexed from shallow to deep, so the first 16 entries of the Linear Weights are of
Conv layers, while the 17th is the FC layer. Due to the magnification effect of BN, σ(g1)/σ(g16) for the Conv
layers is higher than it is in VGG-19 without BN, shown in Figure 6. GradInit learns to reduce the magnification
effect of BN layers by scaling up all the Conv layers and most of the BN layers, given it has greatly down scaled
the last two BN layers and the final FC layer to reduce the variance in the forward pass.
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Figure 5: Averaged per-dimension weight magnitude (‖Wi‖/di) and standard deviation of their gradient
((σ(gi))) of the Batch Normalization (BN) layers and the linear layers of the ResNet-110 on CIFAR-10. All the
layers are indexed from shallow to deep. The linear layers include all Conv layers (2 for each of the residual
blocks) and the final FC layer. The ratio between the weight magnitudes of GradInit and Kaiming Initialization
is the learned scale factor of GradInit in each layer. The gradient variance is computed with a batch size of 128.
GradInit finds a combination of weight norms where the gradient variance is reduced for all layers. Specifically,
it learns to further scale down the second BN layer of each residual block in deeper layers, which is a useful
strategy, as deeper layers should have less marginal utility for the feature representations, and scaling down
those layers helps to alleviate the growth in variance in the forward pass [10]. GradInit also learns to scale up
weights of the first BN layer and all the Conv layers in each residual block, which alleviates the magnification
effect of the BN layers on the gradient variance during backpropagation, happening if their input features in
the forward pass have small variances. The jump on the curves occur when the dimension of the convolutional
filters changes.
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Figure 6: Averaged per-dimension weight magnitude (‖Wi‖/di) and standard deviation of their gradient
((σ(gi))) of the VGG-19 (left two) and ResNet-110 (right two) without BN on CIFAR-10, evaluated with
a batch size of 128. For VGG-19 (w/o BN), σ(gi) increases at Conv layers with different input and output
dimensions during backpropagation. For ResNet-110 without GradInit, the gradient variance is very high due
to the cumulative effect of skip connections during the forward pass. In this scenario, to reduce the gradient
variance, there is no reason to increase the weights, so GradInit downscales the weights for all layers in both
architectures, unlike the case with BN.
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Figure 7: Averaged per-dimension weight magnitudes (‖Wi‖/di) and standard deviation of their gradient
(σ(gi)) for each linear layer i in DenseNet-100 (w/o BN). All the layers are indexed from shallow to deep. The
linear layers include all convolutional layers and the final fully connected layer. Inside each dense block, each
layer concatenates all the preceding features, so their input dimension increases, the weight dimension increases
and the weight norm increases. Compared with Figure 6, DenseNet-100 does not significantly increase the
gradient variance during backpropagation. The standard deviation of the gradient is reduced by around 106 with
GradInit, which explains why it is possible to train DenseNet-100 (w/o BN) without gradient clipping after using
GradInit. The major source of gradient reduction of GradInit comes from reducing the weights in each layer.
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Figure 8: Averaged per-dimension weight magnitudes (‖Wi‖/di) and standard deviation of their gradient
(σ(gi)) for each (BN or linear) layer i in the DenseNet-100 (w/ BN). All the layers are indexed from shallow to
deep. The linear layers include all convolutional layers and the final fully connected layer. The major source of
variance reduction comes from down-scaling the final FC layer.
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Figure 9: Weight norm and averaged per-dimension standard deviation of each weight of the normalization
layers and linear layers in the Post-LN Transformer. Here, GradInit sets A to Adam. The Transformer has 6
Transformer blocks in its encoder and decoder. In each plot, we first list the values for weights in the encoder,
and then those in the decoder. Inside each encoder, we first list the weights from the self attention layers and
then the those from the FFN layers. Inside each decoder, we first list the weights in the order of self attention,
encoder attention and FFN. In general, GradInit reduces the variance for all the weights, except for some of the
Query-Projection and Key-Projection weights in the decoder, which are inside the softmax operations in the self
attention blocks. The major source of gradient variance reduction comes from downscaling the final LN weights
of the decoder, as well as the linear layers of each residual branch (Out-Projection and Value-Projection weights,
FFN.FC1 and FFN.FC2 weights) in each block.
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Figure 10: Weight norm and averaged per-dimension standard deviation of each weight of the normalization
layers and linear layers in the Post-LN Transformer. Here, GradInit sets A to SGD. The Transformer model and
the way each weight is permuted are the same as in Figure 9. Again, in general, GradInit reduces the variance
for most of the weights, except for some of the Query-Projection and Key-Projection weights in the decoder,
which are inside the softmax operations in the self attention blocks. Different from the patterns in the Adam
version, which downscale all the weights in every layer except for the Query-Projection and Key-Projection
weights, the SGD version of GradInit mostly reduces the weights in the final Transformer block of the decoder.
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