

Neil Davidson

EFENDI MINIBOOKS

Don't Just Roll The Dice

Don't Just Roll The Dice

Copyright ©2012 Neil Davidson

The right of Neil Davidson to be identified as the author of this work has been asserted

by him in accordance with the Copyright, Designs and Patents Act 1988.

This work is licensed under the Creative Commons Attribution-NonCommercial-No

Derivative Works 2.0 License. To view a copy of this license, visit

http://creativecommons.org/licenses/by-nc-nd/2.0/ or (b) send a letter to Creative

Commons, 171 2nd Street, Suite 300, San Francisco, California, 94105, USA.

Every effort has been made to ensure the accuracy of the information presented.

However, the information contained in this book is sold without warranty, either

express or implied. Neither the authors, Efendi Books nor its dealers or distributors will

be held liable for any damages caused or alleged to be caused directly or indirectly by

this book.

Efendi Books has endeavored to provide trademark information about all companies

and products mentioned in this book. However, we cannot guarantee that this

information is 100% accurate.

First Published: 2009

This Edition Published: 2012

eBook Version: 2.0.0

Published by Efendi Books

First published by Simple Talk Publishing

ISBN: 978-0-9571791-2-7

Table Of Contents

About The Authors ... i

About The Reviewers ... i

Foreword ... ii

An Introduction To Don't Just Roll The Dice... ii

Chapter 1 - Economics

Chapter 2 - Pricing Pyschology

What Is Your Product? ..8

Perceived Value ...9

Chapter 3 - Pitfalls

Competitors ...18

Fairness..19

Pirates ..19

Switching Costs..20

Should You Take Your Costs Into Account?21

Chapter 4 - Advanced Pricing

Versioning ..25

Bundling...31

Multi-user Licenses...32

The Purchasing Process ...33

Free.. 34

Bargains ...37

Apps and App Markets ...38

Software As A Service ..40

Different Ways Of Pricing ...45

Choosing The Right Model..48

Chapter 5 - Pricing Perception

Practice Trumps Theory ...51

How To Change Your Pricing ..52

Chapter 6 - Product Pricing Checklist

Summary & Bibliography ..57

About The Authors

Neil Davidson is co-founder and joint CEO of Red Gate

software. Red Gate was founded in 1999 and now employs

some 300 people across 3 continents. It has been in the

Sunday Times top 100 companies to work for six years

running. It was founded with no VC money and little debt.

Neil is also founder of the annual Business of Software

conference.

Jamie Rumbelow is a software developer and writer from

Cambridge, UK. He is the founder and director of Efendi

Books, a small publishing start-up, as well as a part-time

student and freelancer.

About The Reviewers

Phil Factor (real name withheld to protect the guilty), aka Database Mole, has 25

years of experience with database-intensive applications. Despite having once been

shouted at by a furious Bill Gates at an exhibition in the early 1980s, he has remained

resolutely anonymous throughout his career.

Michael Pryor founded Fog Creek Software with Joel Spolsky in September 2000. He

has served as the company’s president since the beginning, and has also been the CFO

since 2006. Michael graduated from Dartmouth College with an Honors B.A. in

Computer Science (Phi Beta Kappa, magna cum laude). After graduation, he joined Juno

Online Services, as a Windows client developer. He writes a column for Make Magazine

called Puzzle This, and runs the popular interview website TechInterview.org.

i

Neil’s Foreword

At Business of Software 2007, Michael Pryor held an impromptu session on how to price

your software. So many people turned up, and so many people kept on arriving, that by

the time they’d introduced themselves there was no time left to talk about software

pricing. I’ve had similar experiences; in fact, “How do I price my software?” is probably

the most common question I’m asked by software entrepreneurs and product

managers.

This handbook is an attempt to answer that question.

But first, I’d like to thank Phil Factor, Tony Davis and Michael Pryor for all their editing,

reviewing and suggestions. More people than I can possibly mention have contributed

with offers of help, anecdotes and proofreading. This handbook was way better with

their input than it ever could have been without. Thanks guys.

Jamie’s Foreword

It turns out it’s very hard to improve on brilliance.

Don’t Just Roll The Dice 1st Edition was a brilliant book. When Neil came to me and

suggested that we revise and update his popular free eBook on software pricing, I was

terrified. I didn’t want it to lose its sense of clarity, its usefully short approach to

instruction or its fantastic stories and context.

So don’t be afraid that this won’t be the book you know and love. It will be. DJRTD 2.0 is

an evolution, not a revolution.

We’ve listened to your feedback and worked hard at revising passages of text,

updating statistics and bringing the content into 2012. We’ve added a whole new

section on Software As A Service pricing, as well as a few bits on pricing your mobile

apps. We’ve added some lovely new illustrations and re-designed the book to give it a

whole new look and feel.

Welcome to Don’t Just Roll The Dice 2. I hope you enjoy it.

ii

An Introduction To Don’t Just Roll The Dice

In 1938, two young engineers were ready to launch their first product. They’d struggled

with what to build. After considering amplifiers, radio equipment, air controllers,

harmonicas and even muscle-building electrodes for housewives, they’d finally decided

to create an oscilloscope. Not wanting customers to be put off by a version one

product, they sensibly called it the Model 200A.

The next step? Decide the pricing.

They eventually settled on $54.40. Was that because it represented the cost of

manufacturing, plus a decent markup? No. These engineers hadn’t taken that into

account. In fact, they soon realized that the cost of building each oscilloscope was

more than the price they were asking. Was it based on what the competition charged?

No. They hadn’t bothered to discover that General Radio charged $400 for an

equivalent model.

They chose $54.40 because it reminded them of the 1844 slogan used in the campaign

to establish the northern border of the United States in the Pacific Northwest (“54” 40'

or Fight!“).

What a dumb-ass way to price a product.

But these two young engineers recovered from their stumble. The Model 200A went on

to become the longest-selling basic electronic design of all time, still selling 33 years

later. The company they founded became an institution. Their names? Dave Hewlett

and Bill Packard.

If Hewlett and Packard, two Stanford graduates with the rosiest of futures ahead of

them, can flounder so badly when faced with the problem of how to price their

products, what hope do the rest of us have?

Quite a lot, as it turns out.

ii

Chapter One

Economics

To understand product pricing, it helps to understand some, but not too much,

economics. The easiest way is through a simple example.

Let's say you've just launched the Time Tracker 3000. It's a downloadable piece of

software that logs which applications you use throughout the day, and sends the usage

information back to a central web site. From there, you can find out what you've been

up to all day long.

You've decided to charge a one-off fee for it, but how are you going to price it?

If you give it away for free, you'll get lots of customers. A thousand, say, including

Belinda the bargain hunter, Stewart the student, Willhelm the web start-up founder, Pat

the product manager and Ernest the enterprise developer.

Let's represent these thousand customers, paying no money, as an infinitely thin

horizontal bar (representing the $0 price), 1000 units long (representing the quantity):

If you charge $100 instead, the number of purchasers will instantly be a lot less.

Belinda is a bargain hunter and was only using the software because it was free, and

Stew is a student, so neither of them will buy. You'll get, for the sake of argument, five

hundred customers instead of the original thousand. Let's represent that as a bar with

a height of $100 and a length of 500 units. What's the revenue you generate from this?

It's the area of the bar, so $100 x 500 = $50,000.

2

Let's overlay it on top of the first bar:

What happens if you increase the price to $200? Some of the people who would have

bought at $100 will no longer buy, so your number of sales will decrease again.

Willhelm runs his own company and can't justify the price, so he's no longer interested.

Let's say 300 people will still buy; represent this with a rectangle and overlay it onto

the chart. Again, the revenue you make is the area of the rectangle. $200 x 300 =

$60,000:

Let's increase the price once more, to $500. Pat the product manager drops off

because at that price she'd rather buy a competitor's tool. Let's say 50 people will still

3

buy, and represent this as a rectangle, overlaid on the chart. Once more, the value of

this rectangle is its area: 50 people buying at $500, so 50 x $500 = $25,000.

Finally, since the Time Tracker 3000 is valuable, but not that valuable, let's assume

that nobody will buy if you price it at $1,000 and represent this as a bar of width 0 and

plot it on the chart:

We've plotted five points on what is becoming a curve of price against the number of

people who will buy the Time Tracker 3000 at that price. What's more, you can work

4

out the total revenue you will get at any particular price by looking at the area of the

rectangle (price multiplied by purchasers) under the point at that graph:

Economists call this a demand curve.

To maximize the revenue of the Time Tracker 3000, we need to find a point on the

graph that maximizes the size of the rectangle underneath it. To understand that, it

helps to plot the area (i.e. the total revenue) against the price. For the Time Tracker

3000, this looks something like this. (I've plotted the five data points we've already

got):

5

From the diagram, you can see you should price the Time Tracker 3000 at around

$200. It's not where you'll sell the most units, but it's where you'll make the most

money.

Plotting a demand curve is, in theory, straightforward, but in practice it is way harder.

In the real world, you don't know what the shape of the demand curve is, or where your

current price sits on it. On some curves, and on some points of the curve, you'd be

right to increase your prices: the reduction in the number of people buying your

product will be outweighed by the increased revenue from each person. On other

curves, or on other points of the same demand curve, increasing your prices will lead to

a massive drop-off in sales and you'll lose money.

What's more, the shape of the demand curve depends on a bunch of variables: your

competitors, how they'll react to any price changes you make, your customers, their

environment and situation, and the type and quality of your product.

6

Chapter Two

Pricing Psychology

The demand curve, discussed in the previous section, might be dynamic and depend on

many factors, but you can still exert some influence on its shape. In this chapter, I'll

talk about how people decide how much they'll pay for a product, and how you can

change this.

But first, you need to be able to answer a simple question: what is your product?

What Is Your Product?

You might think that your software product is just the bits and bytes that your

customers download, or the HTML pages that they view, but you'd be wrong. In reality,

your product is much broader than that. It's not just the software or the web site: it's

the documentation, the help required to get it working and the promise of support

when things go wrong. It's the future roadmap of the product, the pledge to carry on

developing future versions. In some cases, it's a dream, an experience; a way of life.

One of the clearest examples comes from the accounting industry. At Red Gate, we use

Sage's accounting software. We're not the only ones: Sage is a software business with

6.3 million customers. They employ 13,000 people and that has a market capitalization

of nearly four billion pounds. It dominates the accounting market in the UK, and has

seen off concerted attacks from, among others, Microsoft and Intuit.

But their software sucks.

It's slow, and it's hard to use. When I first used it in 1999, the buttons on the toolbar

didn't depress when I clicked them: they were just static pictures painted on a grey

background. The application is so ugly that the product walkthroughs on the Sage web

site barely feature the product itself.

These two facts–the awfulness of the product and the magnitude of its success–can be

reconciled if you understand that Sage's product is more than just the software.

When you buy Sage software, you are not just buying software. You are buying

reassurance: when the tax laws change, the software will get updated too. You are

buying familiarity: if you buy Sage, the odds are that your accountant or bookkeeper

will already be able to use it. You're buying support: if you don't understand some of

8

the accounting codes or procedures you need, then you can phone somebody for help.

Tens of thousands of people call Sage's help line per day.

The reason that Sage is so dominant in the UK is because Sage understands exactly

what their product is. You need to do the same.

Perceived Value

Once you've determined what your product is, you need to consider its value to your

customers. In the case of the Time Tracker 3000, let's say that it will save a particular

customer, Willhelm, three hours of work and that Willhelm prices his time at $50 an

hour. That means that Willhelm should buy the Time Tracker 3000 at any price under

$150, assuming he has nothing better to spend his money on. This is its objective

value.

Of course, this assumes that Willhelm is the rational, decision-making machine that

economists love. In fact, Willhelm is a flesh-and-blood, irrational human being who

doesn't price his time and calculate costs and benefits. He has a perceived value of

the Time Tracker 3000, which may or may not be linked to its objective value.

The perceived value of a product may be higher than its objective value. In 2003,

Gartner released a report that claimed that almost half of all customer relationship

management (CRM) systems lie unused. That's several billion dollars of software that

smart people thought was worth it, but wasn't.

9

Beats by Dr. Dre headphones are another example where perceived values are much

higher than objective values. Beats outline in promotional materials that with most

headphones, listeners are not able to hear "all” of the music, and that Beats would

allow people “to hear what the artists hear, and listen to the music the way they

should”. The actual boost in quality is, of course, much less than the boost in cost.

A product's perceived value may be lower than its objective value too. A few years ago,

I stumbled on somebody who insisted on using Excel as a word processor. According to

this user, the additional expense of buying Microsoft Word wasn't worth the benefits

he'd gain. This was almost certainly a perception rather than a reality.

Back to Willhelm and the Time Tracker 3000. If you want to change how much Willhelm

will pay for your product, then changing the product is one option, but only if you can

also change his perception too. In fact, it turns out that you can change Willhelm's

perception of your product's worth without touching the product at all. That's one of the

things marketing is for.

How People Set Their Perceptions

So how do people generate their perceived value of a product? How do they decide

how to think?

For a start, it's extremely hard for them to do so in a vacuum. Try asking a British

Member of Parliament how much a pint of milk costs, a contestant on The Price is Right

for the value of a chest of drawers, or the average supermarket shopper how much

they should pay for a bottle of bleach. They'll struggle.

People base their perceived values on reference points. If you're selling a to-do list

application, then people will look around and find another to-do list application. If they

search the internet and discover that your competitors sell to-do list applications at

$100 then this will set their perception of the right price for all to-do list applications.

When Microsoft released DOS 1.0 in 1982, they set a price of $50. At the time, an

operating system for a mass-market computer was a brand new category. Since

consumers had no reference point, $50 became accepted as a 'fair' price. When IBM

launched OS/2 1.0 in 1989 and priced it at $340, consumers baulked. DOS and OS/2

were very different operating systems, and $340 could well have been a fair reflection

10

of the additional benefit consumers would have extracted from the more-advanced OS/

2, but Microsoft had already defined the reference point, and when IBM tried to

challenge it they failed.

This doesn't mean you need to copy the reference point. If your product genuinely is

better than your competitors', and you can demonstrate the value of this difference, or

create a perception of that value, then you can charge more.

Of course, if your product is significantly less valuable than your competitors' then you

may have no choice but to charge less. Competing on price may be the only option you

have. Take pharmaceuticals. My local supermarket stocks thirty or so different sorts of

painkillers. You can buy a pack of 16 Nurofen for £1.97 ($3.40), or a pack of 16 Tesco

analgesics for £0.32 (about 50 cents). The physical good – the 200mg of ibuprofen – is

identical in both the generic and named brand product. But don't forget that the entire

product is more than the chemicals. It includes the marketing, brand name and

packaging. Using this wider definition, Nurofen is the superior product, and the only

way Tesco can compete is on price.

The value people perceive your product to have can depend on their taste and

culture. Some people are passionate about good wine and will pay $50 for a bottle,

but others like the taste of $5 wine just fine. As Dave O'Flynn wrote to me:

““ 11

I never thought Apple products were worth the premium until I

joined Atlassian. 12 months later, I gladly paid a large

premium for a Macbook Air. The people I was surrounded with

valued design and elegance. Prior to that, I was surrounded by

people that valued bang for the buck and my laptop then was

a generic AMD that weighed a ton in comparison. I was

essentially the same person; the changes were in the

expectations and sense of value of those around me.

How much money they have affects their perception of value. Dennis Kozlowski, ex-

CEO of Tyco, felt that $15,000 was a reasonable price to pay for a dog-shaped umbrella

stand, but most of us don't.

Finally, and importantly, knowledge influences the value people place on products

hugely. A laptop with a 2.7Ghz quad-core Intel Core i7 processor, 8GB of RAM and a

Retina display is worth more than one with an N-Series Intel Atom Processor and a VGA

display to me, but not to my mum.

Increasing Perceived Values

The pharmaceutical industry holds another good example of how marketing can

increase the perceived value of a product, without changing its substance. In 1981,

when Glaxo wanted to release Zantac, their anti-ulcer drug, they faced a marketplace

dominated by SmithKline's Tagamet. Although Glaxo felt their drug was more effective

than SmithKline's, the US FDA rated Zantac as providing little or no benefit over

existing treatments. Rather than marketing Zantac as a me-too product, at a similar

price to Tagamet, Glaxo decided to spend heavily on saturating their sales and

marketing channels. This ubiquitous promotion increased Zantac's perceived value,

and they were able to price the product higher to reflect this added value. By the end

of the 1980s, Zantac had knocked Tagamet off its perch as the best selling drug in the

world.

Here are some more ways of increasing the perceived value of your product:

Increase its objective value. Perceived and objective values aren't identical, but

they're still correlated. As Joel Spolsky wrote in 2006[1]:

12

With six years of experience running my own software

company, I can tell you that nothing we have ever done at Fog

Creek has increased our revenue more than releasing a new

version with more features. Nothing. The flow to our bottom

line from new versions with new features is absolutely

undeniable. It's like gravity. When we tried Google ads, when

we implemented various affiliate schemes, or when an article

about FogBugz appears in the press, we could barely see the

effect on the bottom line. When a new version comes out with

new features, we see a sudden, undeniable, substantial, and

permanent increase in revenue.

Give your product a personality. 37signals may not sell the best project

management software in the world, but it has personality. The 37signals team stands

for something: uncompromising simplicity. Want an extra feature? Tough. If you want

features, buy something else.

Link your product to yourself, and then define, and promote, yourself as an expert.

In its early days, before his company was bought by Symantec in 1990, Norton Utilities

and Peter Norton were synonymous. All of Norton's products featured a picture of

himself, with his arms crossed.

Make people love your brand. Innocent Smoothies have become huge very quickly

by filling their packaging with small, friendly little notes and cute Easter eggs. They

make it clear that Innocent is built and run by human beings, and focus on natural, not-

from-concentrate juices and smoothies. People love this friendly, congenial approach.

Provide a better service. When somebody buys software, they want reassurance

that it's going to work and that you'll be around if it doesn't. If you're a small company

with big competitors, this is something you can do better than they can. Capitalize on

it.

Create a tribe. Products can be symbols of belonging. If you can turn your product

into a badge that people wear to make a statement about who they are, which groups

““

1.http://www.joelonsoftware.com/items/2006/12/09.html

13

they belong to and those they don't, then that's valuable. When Black and Decker

introduced its DeWALT line of drills, it went to building sites and lumber yards at lunch

times to hand out pulled pork sandwiches, give product demos and hold drill-off

competitions, with prizes. They went to NASCAR races and rodeos, where their end

users hung out. This meant a lot of professionals purchased DeWALT drills, and created

a tribe around them. Amateur DIYers don't need to spend $400 on a DeWALT drill, but

they like feeling part of the 'professional' tribe too.

Remind people of how much work you've put into your product. People are

more likely to pay for years of your time than for an easily-copied software product.

The twenty year old Bill Gates used this technique in his now-famous 'open letter to

hobbyists' in the Homebrew Computer Club newsletter in 1976:

Almost a year ago, Paul Allen and myself, expecting the hobby

market to expand, hired Monte Davidoff and developed Altair

BASIC. Though the initial work took only two months, the three

of us have spent most of the last year documenting, improving

and adding features to BASIC. Now we have 4K, 8K,

EXTENDED, ROM and DISK BASIC. The value of the computer

time we have used exceeds $40,000.

Appeal to people's sense of fairness. When coffee shops charge an extra 10 cents

for coffee made with Fairtrade beans, they're lining their pockets with your ethics. How

much of those ten cents go to the farmer who originally farmed the quarter of an ounce

of coffee beans that went into your Fairtrade latte? Under a penny.

Sell the experience. Starbucks do this brilliantly. At its core, a cup of coffee is just a

few beans, worth pennies. If you crush the beans up and put them in a packet on a

supermarket aisle, you can charge a few more cents. If you mix it with hot water and

milk, you can charge $1.50. But if you place it in a pleasant environment, with

comfortable furniture and chilled music playing, you can ask for $3.50. You're not just

buying a coffee, you're buying some time in the Starbucks experience.

Ultimately, it comes down to differentiating your product. It almost doesn't matter

on what – features, benefits, the way that you sell, the service that you provide, the

country you're based in – more or less anything will do.

““

14

Signposts

Now that you know that customers will find reference points to compare your product's

price against, you should do all you can to encourage favorable references and

discourage unfavorable ones. If you want to sell a to-do list at $200, when the market

price is $100, then you need to add a couple of features so your customers cannot

make a direct comparison, and then promote comparisons to other companies' $300

productivity suites, not their to-do lists. At the same time, avoid all comparisons to

open source alternatives.

If your customers can't find a reference point for your product, then they look for

proxies, or signposts. Supermarkets take advantage of this: consumers decide

whether luxury ice cream (something they don't buy regularly) is reasonably priced

based on whether diet coke (something they buy all the time) is good value. If a

supermarket sells a can of diet coke for $4, consumers assume all their other products

will be expensive too.

Say you sell two products: the Time Tracker 3000 and the Task List 400, a to-do list

application. When somebody thinks of something they need to do, they store it in the

Task List 400. Later on, they can prioritize their tasks, split them up into sub tasks,

track their progress and smugly mark off the tasks as done.

Let's say the Time Tracker 3000 has no competitors, but the Task List 400 has plenty.

Your customers will judge your Time Tracker 3000 price on how you've priced the Task

List 400. Charge a reasonable $25 for your to-do list application and customers will

take your word that $300 is a good price for the Time Tracker 3000. Charge $1000 for

the first app, and they'll assume you're fleecing them on the new one too.

If your product is unique, and customers can find no reference points or signposts, then

you have a chance to set your customers expectations, and define their perceptions. If

you tell your customers that the Time Tracker 3000 is worth $300, then the odds are

they'll believe you. We've already seen how Microsoft did that with the first version of

MS-DOS.

If you have competitors in your market, then your customers will be more conscious

of cost, but if your product creates a new category, then early adopters are less

likely to be price sensitive. If you can create a teleporter, a brand new category of

product, that will beam you, unharmed, from New York to Paris then not only can you

15

define your price, but you can also raise your price from $20,000 to $25,000 and

people will still buy it. But if you create a car, a new product within a category that

already exists, and increase your price from $20,000 to $25,000 then your sales will

suffer.

16

Chapter Three

Pricing Pitfalls

So far, we've looked at some economic theory, and the psychology of pricing.

Hopefully, you've now got some idea of how to set a price. But there are some other

factors to bear in mind too, and some pitfalls to watch out for.

Competitors

When you set your product's price you need to think about how your competitors will

react. If you undercut them, will they start a price war? Even if your competitor has a

high-cost business model and cannot compete on price in the long term then there's a

risk they'll respond in kind if you pose a serious enough threat, and just hope you go

out of business before they do.

The airline industry gives the best example of the futility of starting a price war. On

September 26th 1977, Freddie Laker's first ever Skytrain flight to New York took off

from London Gatwick. The price for the return flight was $238.25 (plus an extra few

dollars for a meal), well under half the price of rivals' tickets.

Five years later, Laker Airways was bust, the victim of the vicious, dirty price war that it

had initiated. As Laker had found out, and as EOS Airlines (founded 2004, closed 2008),

Silverjet (founded 2006, failed 2008) and MaxJet (founded 2003, failed 2007)

subsequently relearned, taking on an incumbent on the basis of price is highly risky at

best, suicidal at worst, especially when your competitors cannot afford to lose and have

no option but to fight to the death.

If you are going to compete on price, then you should minimize the possibility of a

counter-reaction from your competitors. Don't bang your drum and tell the press how

you're going to destroy them (a mistake that Marc Andreessen of Netscape made when

he said “we're gonna smoke 'em”, referring to Microsoft (or “those idiots up in

Redmond” as Andreessen put it). Focus on their marginal customers and hope that by

the time they notice you it will be too late.

On the other hand, if you set your product price too high, will other competitors

emerge? Price the Time Tracker 3000 at $10,000 and you could create the market, only

for a competitor to produce the Tyme Trakka 3000, undercut you, and steal your

business.

18

Microsoft is famed for this. They wait for competitors (and often partners) to prove

markets with low volume, high price products – whether it's CRM, testing tools or

business intelligence – and then jump in with a low-cost, high-volume model.

Fairness

However you price your product, remember that consumers have an acute, although

often irrational, sense of fairness. Think twice before you betray that.

Books provide a good example. An economist would point out that I derive the same

value (traditional economics is all about value) from reading a paperback version of my

favourite piece of erotic fiction 'Fifty Shades of Grey' as I do from reading the electronic

version [Jamie wrote this bit, not Neil - editor]. But the list price is very similar (~£7).

It's just not fair that short-sighted book publishers charge the same for paper as they

do for electrons. I feel screwed over, and I don't like it.

Pirates

If your price is way off whack, you will provide an opening for a special type of

competitor: the pirate. Price software too high, or at a price point that most people

judge 'unfair', then be prepared to be ripped off in return.

If you're observing widespread piracy of your software, perhaps it's just too expensive?

But pirates can also be your friends, in two ways:

Firstly, if your strategy is to achieve world domination by providing a product to every

potential customer, at a price he or she can afford, then pirates provide a cheap back

channel. They put a copy of your software into the hands of people who will not pay,

cannot pay, are too dishonest or too unprincipled to pay, or who simply don't value

your work that much. However, a pirated copy will end up, eventually, in the hand of

somebody who will pay.

That's how early shareware software operated. In the early 1980s, bulletin boards and

user groups were a network commonly used to pass around pirated software. In 1982,

Andrew Fluegleman and Jim Knopf piggy-backed onto this pre-existing network, added

19

a notice in their software asking people to pay them if they liked their software, and

invented shareware.

The second reason that pirates can be your friends is that they are a bellwether. They

indicate the existence of a market failure. Most people aren't natural crooks, but high

prices can force them to do things against their better nature. Apple realized that the

success of illegal download sites indicated the need for cheap, downloadable music.

Their strategy of satisfying people's needs worked far better than the ostrich-like

behavior of the music labels.

Switching Costs

If you're trying to persuade people to switch to your product from a competitor's then

you'll need to position the price to overcome the switching costs your customers face.

Say you're trying to persuade a customer to switch from his garbage $500 word

processor to your superior $100 one. First of all, you'll need to price to overcome the

economic switching costs. It'll take him time, and therefore money, to convert his files

to a new format and to learn the new menu layouts.

Secondly, you'll need to overcome the psychological switching costs. People

overvalue what they have, and undervalue what they don't have. I purchased three

balsawood penguins from the Kontiki exhibition in Oslo. They cost me ten dollars. Care

to raise your price? Didn't think so, but I wouldn't sell them to you for even a hundred. I

bet your house is probably full of similar junk too.

Another powerful psychological factor people struggle to overcome is the emotional

attachment to money they've already spent. Rationally, it's gone. It's a sunk cost. Your

customer shouldn't care that he's already spent $500 on his garbage word processor.

But he does.

There are some things you can do to mitigate switching costs, and even to use them in

your favor. Here are a couple of examples. Open Office, which includes open source

word processing and spread sheet applications, lets you open files saved by Microsoft

Word. Early versions of Microsoft Word not only opened WordPerfect files, but had a

dedicated section in the help for WordPerfect users, and even allowed you to use the

WordPerfect shortcut keys.

20

Here's another example. If you decide to stop using FogBugz within ninety days of your

free trial expiring, then Fog Creek will refund you all the money you've spent, no

questions asked.

These strategies have two effects: first of all, they reduce the psychological and

economic impact of switching to Word or FogBugz. Secondly, once you have switched,

you'll have invested time and energy into using the new software, and will have

incurred a whole load of new switching costs, which will then stop you from switching

back.

Should You Take Your Costs Into Account?

Clearly, you cannot price your software for less than it costs you to produce, and sell,

each unit. These are your marginal costs. You might think these costs are zero, but

they are not.

You need to find potential customers and persuade them to buy. If you have a sales

team then you might need to pay them commission. It will cost you money to support

customers, and chase the customers who don't pay.

If you're planning on not charging the majority of your users, then think very carefully

about the cost of each additional user. If you think it is zero then you are almost

certainly wrong. If you're running a web site, then each additional user will cost you

storage space, CPU cycles and bandwidth. This might be a very low cost – fractions of a

penny, even – but if you need huge numbers of users to make money then small costs

multiplied by vast numbers can equal big outlays.

Take YouTube. It's a free service and, theoretically, supported by advertising. The cost

of serving each additional video is tiny but YouTube see 4 billion video views globally

every day. This means that in 2012 it will serve up an estimated 1.5 trillion video

streams. Multiply together the tiny cost and the large volume and you can understand

why YouTube costs Google an estimated $1.5 billion a year to run. It nowhere near

covers its costs through advertising revenue.

Also, don't forget about support and customer engagement. With the rise of social

networks as legitimate business tools, the cost of looking after your users in this space

becomes important. If your website goes down, you may need to respond to customer's

21

complaints one-by-one on Twitter. If somebody's sharing information about your

software on their Facebook account, you will want to jump into the conversation and

ask if you can help any further. These interactions cost time, and ultimately, money.

Paperback Software offers another example of how misunderstanding how your

software is sold, and failing to account for your costs, can lead to catastrophe. When

Adam Osborne set up Paperback Software in 1984, it was founded on the premise that

software cost too much. They released VP-Planner for $99.95 in 1986 and marketed it

directly against the $500 Lotus 123. Back in the 1980s, most software was sold through

dealers. The dealers earned a commission for every piece of software they sold, but so

hated the low margins on the low cost VP-Planner that they bad-mouthed it and

encouraged people to buy the high-cost, high-margin Lotus 123 alternative.

Furthermore, since VP-Planner was essentially a direct copy of Lotus 123, customers

demanded as much support for the cheaper product as the more expensive one,

destroying any profit that Paperback Software made. Paperback succeeded in harming

Lotus's market share, but failed to earn enough money to defend themselves against

the lawsuit that Lotus launched.

If the price your customers are willing to pay is lower than what it costs you to sell your

software, then you haven't got a business and your product will flop. You need to cut

your cost of sales, or change your pricing mechanism so customers end up paying

more over the lifetime of the product.

When Panasonic launched the 3DO, its gaming console, in 1994, Time Magazine

nominated it its product of the year. With a 32-bit RISC processor, custom math co-

processor and 2MB of RAM, it was far ahead of its time. But Panasonic priced it at $699,

way above its competition and much higher than what even its target market of early

adopters could bear to pay. That, combined with muddled marketing, caused it to

bomb.

Other games console manufacturers learned from this mistake. When the PS3 and

Xbox 360 were launched, they cost more to produce than the selling price that the

market could bear, so Sony and Microsoft charged consumers a low price, and

accepted that they would lose money (up to $300) on each console sold. They then

recovered the revenue through royalties on games people bought. The real price of the

console is hidden; buried in a clever pricing model.

22

With the Wii, Nintendo took a different approach. They wanted to reach a much wider

market than their competitors' 18 - 35 year old male sweet spot, but realized that older

people, housewives and families would pay less for a console than hardcore gamers

would. So they cut their cost of manufacture and used cheaper, slower components.

When the Wii was launched in September 2006, Nintendo made a profit on every

console sold. That made the games cheaper to produce too, since royalty payments

can be lower, but not necessarily cheaper to buy. Why? By now, the answer should be

obvious to you.

Your pricing may need to change over the course of your product's lifetime. In the early

stages, you need to attract new users and convince them that your software is the one

for them. Lower prices and big marketing efforts are usually crucial to accumulating a

community.

As your product gets maturer, your customers will be on the lookout for more variety

and options. By this point they'll have been using your software for a while and will

understand its features and how they fit it into their workflow. Providing them the

opportunity to customise their experience will make them evangalise your product

even more. We'll talk more about this in Chapter 4.

You'll notice that there's one factor I've not mentioned, and that's how much your

product has cost to develop. So far I've talked about marginal costs – how much it costs

to produce, or sell, each additional unit of your software. Your up-front cost is different.

You might have spent one hundred dollars developing your product, or a million, but

that money is all spent. Gone. It's a sunk cost.

What matters now is not how much you've spent, but what people are prepared to pay.

23

Chapter Four

Advanced Pricing

Up to now, we've considered selling single products. But what happens when you have

several products to sell, or sell multiple versions of the same product? Or even, what if

you're selling a service rather than a product?

Versioning

Each of your potential customers has a price they'll buy your product at. Revisiting our

previous example, Belinda (the bargain hunter) and Stewart (the student) will only use

the Time Tracker 3000 if it's free. Willhelm will pay up to $150 and Pat's maximum

price is $400. Let's say Ernest will pay up to $600.

Here's a chart of the revenue you'll make at each price point:

Pricing Who buys Revenue

$0 Everybody $0

$150 Willhelm, Pat, Ernest $450 (three people @ $150)

$400 Pat, Ernest $800 (two people @ $400)

$600 Ernest $600 (just Ernest)

$1000 Nobody $0

25

If these five people are your entire target market, then, to maximise your total

revenue, you should price the Time Tracker 3000 at $400. It's the best single price, but

you'll lose out on sales to Willhelm, and you'll lose out on the extra revenue that Ernest

would have paid.

If there had been some way to sell the product to each customer at the maximum price

that they could afford to pay, you would have been able to sell $1150 of software.

That's what's versioning is about. It's a mechanism of segmenting your users according

to their willingness to pay. You figure out if you can group your customers in different

ways, and then see if those groups are willing to pay different prices for your product.

Here are some of the ways of doing it:

• By feature. For example, you can have 'standard' and 'pro' versions of tools.

This is extremely common in the software business. Microsoft's Visual Studio

2008 came in five different versions: Express (free), Standard ($299),

Professional ($799), Team System ($5,469) and Team Suite ($10,939). That's a

price for everybody, with features to match, from the cash-poor hobbyist to the

rich, blue chip enterprise developer. In the Time Tracker 3000 example, you

might create a professional edition that lets people compare how their usage of

different products compares with other people doing similar work.

• By availability. Some of your customers might be prepared to pay more to get

your product quickly. Hardback books are a good example of this. They have

the same content as paperbacks, but are packaged differently and aimed at

people who cannot wait for the content. For the Time Tracker 3000, you could

sell an additional subscription service that gets customers early access to

software.

• By demographic. Students have less money than businesses, hobbyists than

professionals and school kids than baby boomers. You could provide a version

of the Time Tracker 3000 which students could get, but only if they prove

they're in full time education.

• By geography. Customers in the USA will pay more for the same product than

those in India and China. Microsoft, to compete with the threat of open source,

provides a cut-down 'starter' edition of its Vista operating system, available

only in poorer countries such as India and Mexico. The Time Tracker 3000 might

be available in India for 10% of its US cost, but be localized into Hindi,

rendering it useless to Westerners.

• By industry. Perhaps architects, or software developers or aircraft designers

have specific needs, and perhaps your software can be customized to suit

26

them. The Time Tracker 3000 could come in a special edition, aimed at law

firms, that not only tracks application usage, but also bans certain applications.

• By platform. Mac users might be willing to pay more money for your software

than Windows users, or vice versa. You could sell a Time Tracker 3000 for the

Mac at a higher price than the Windows version.

Of course, you need to be aware of the dangers of versioning too. You need to make

sure that the features you choose for each version appeal to the segment you're

targeting. For example, if you introduce a 'Lite' version of your product, you need to be

sure that professional users won't downgrade to it.

When attempting to version by one of these criteria, and if your goal is happy

customers, then it's best to remember consumers' keen sense of fairness. Adobe

attempt to version on geography; their Acrobat 9 Pro cost $449 in the US, but £445

($750) in the UK. Economically, this might make sense, but it still leaves me banging

my keyboard in impotent rage. And is that good, in the long term, for Adobe?

Versioning has a couple of subtleties. Take a fast food restaurant that serves the

following sizes of diet coke:

Product Price

Small $1

Medium $1.50

Large $2

These prices have been chosen, presumably, to maximize the fast food chain's profits.

People with little money, or who aren't very thirsty, buy the small drink; those who are

marginally thirstier buy the medium one and very thirsty people buy the large one. The

additional fluid ounces cost the restaurant virtually nothing: this is all about finding a

price point that works for everybody.

You can also see the use of reference points here. Consumers see the 'small' drink, and

consider the 'medium' drink a bargain (a lot more drink for just a few more cents).

27

So far, so blatant, but here's one subtlety: adding a 'jumbo' drink will increase the sales

of the 'large' drink, even if nobody ever buys the 'jumbo' one. Adding more choices at

the edges drives people to the middle of the range. They don't want to appear stingy,

or greedy, so go for the safety of the middle. In this example, adding a 'jumbo' version

on top shifts where the middle lies, so makes more money.

Here's the second subtlety: this only works if people can easily compare the products

being versioned. For the sodas, it works. The jumbo soda is clearly larger than the large

soda, which is clearer larger than the medium soda, which is clearly larger than the

small soda. So people go for a safe option, somewhere in the middle.

But the effect reverses if people struggle to compare the different versions of the

products. In that case, people flee the middle and head for the extremes. Take laptops.

Say you ask people to choose between the following products:

Laptop type Features Price

‘Standard’ laptop Normal features $1000

X100 Standard + DVD player $1100

X102 Standard + Wireless card $1100

X103 Standard + Faster processor $1100

X104 Standard + DVD + Wireless $1200

X105 Standard + Wireless + Faster processor $1200

‘Extreme’ laptop Standard + DVD + Wireless + Faster processor $1300

Rather than migrating towards one of the middle options, people are pushed towards

the edges. They go for the 'standard' laptop or the 'extreme' one. This is because it's

impossible to compare the benefits of the different items being offered. Is a wireless

card a better option than a faster processor? Or how about a DVD drive? As a result,

people take an easy “all or nothing” decision.

28

When people are presented with a bunch of confusing options they cannot compare,

going for an extreme isn't their only option. They also have a tendency to defer: to

simply not buy, or go for a competitor's product.

This counter-intuitive behavior has some interesting consequences. If consumers are

faced with a choice of, say, a Sharp or a Panasonic microwave then roughly half of

them will plump for a Sharp and half for a Panasonic. If they are asked to choose a

microwave from a selection that contains a single Panasonic and multiple versions of

the Sharps, then one of two things can happen.

If they can easily compare the Sharps (for example, because they differ solely in price

and one other attribute, such as size or power), then more people will buy the Sharp

than the Panasonic. This is a demonstration of how providing multiple versions of a

product will increase the product's sales.

On the other hand, if they cannot easily compare the Sharps then the effect is

reversed. For example, if one Sharp has an adjustable speed turntable, another has a

moisture sensor, one has programmable menus and another has a 'hold warm' feature,

then consumers will shun the Sharp, reject confusion and go for the Panasonic. This

shows how providing multiple versions of a product can decrease a product's sales.

Here are just some of the possible versions of Microsoft's Vista operating system:

29

Is protecting against hardware failure more important than having all-in-one media

center functionality? And does being able to remotely access your business resources

outweigh being able to easily make DVDs? It's hard to tell, so consumers will tend to do

one of three things:

• Go to the extremes – buy Home Basic (at $199.95) or Ultimate (at $319.95)

• Defer a decision – stick with Windows XP

• Buy a competitor's product.

I bought a Mac – my first one ever.

30

Bundling

Bundling is another way of giving your customers better value, persuading them to buy

and generating more revenue. Most straightforwardly, people love a bargain.

The idea of getting $5140 of software for $1,595 (in the case of the SQL Toolbelt that

Red Gate sells) is clearly compelling.

But even without price discounting, bundling makes sense.

Say you've got two products, the Time Tracker 3000 and the Task List 400. Willhelm,

the web start-up founder, is hyper-focused. Once he gets going on something, he'll see

it through to completion. But he struggles to organize the list of things he has to do.

Pat, on the other hand, doesn't see much point in task lists, but she has the feeling that

she wastes much of her working day, and would like to know how she spends it. Pat

and Willhelm are therefore willing to spend different amounts on each product.

If you sell your products individually then, product-by-product, you need to choose the

maximum price that the person who values that product the least will still pay. You

need to price the Time Tracker 3000 at $150 (so Willhelm will buy it) and the Task List

400 at $150 (so Pat will buy). That means that Willhelm and Pat will each give $150 for

each product, and you generate revenue of $600.

Let's say you create a bundle of the Time Tracker 3000 and the Task List 400. Willhelm

and Pat will both pay $400 for the product they need (Task List 400 and Time Tracker

31

3000, respectively). At that point, the bundle is worth $550 to Willhelm and $550 to

Pat. Set the price at $550, sell the bundle to both people and you generate revenue of

$1100. Willhelm and Pat have got all the software they want, and you've generated an

extra $500.

However, bundling has drawbacks too. When you bundle software together it becomes

harder for your customers to understand what they're paying for. In turn, that might

mean they are less likely to use it.

For example, a diner eating a fixed price menu is more likely to skip coffee than a diner

who's paid explicitly for the coffee. The coffee is bundled, so the disconnect between

what the diner is paying for and what he is consuming makes it easier to not consume.

For software, if a customer is less likely to use a piece of bundled software then he

might be less likely to buy a future version, or to continue to spend money on

maintenance contracts. One way of counteracting this effect is to continue to be

explicit about the worth of each item in a bundle.

Multi-user Licenses

Multi-user licenses are one more way of bundling software. But before you decide to

offer multi-user discounts to your customers, remember three things:

1. Larger companies tend to buy more copies of software since they have more

users. Offer them a three for the price of two discount then they'll get a better

deal than individual users and small businesses. Larger companies also have

more money and tend not to be so price sensitive. This means that the poor are

effectively subsidizing the rich.

2. You might lose sales in the long term. The company who paid for two licenses

may have paid for three if you'd asked.

3. On the other hand, they might not have done. Everybody likes a discount, even

large companies.

4. Larger companies might have more money, but they can also have stricter

purchasing policies.

It's hard to know which of these factors are the strongest in any given situation. I know

of one company who moved away from multi-user deals based on the first two reasons

32

above. They moved from selling a 'five for the price of three' bundle to a simple 10%

discount per copy, for multiple copies.

It turned out that their customers preferred the convenience of buying multi-user

bundles. If their customers had two users, they liked being able to buy a five user

license for the price of three and get the possibility of a bargain–two 'free' users–if

another person started using it. This outweighed the risk of overpaying, and never

having a third user. Two months and several hundred thousand dollars of lost revenue

later, the company switched back to multi-user deals.

The important point is that theory cannot tell you about the wisdom or otherwise of

multi-user deals. The only way to find out is to try it out.

Site Licenses

You need to be careful with site licenses. Sell a site license to Microsoft or Walmart and,

unless you've customized your pricing accurately and high, you could be forgoing

enormous amounts of future revenue. If you insist on selling a site license then make

sure you define 'site' well. Is it for a specific office, or country, or worldwide?

The Purchasing Process

You must consider your customers' purchasing process when you set your prices. If

you're selling to businesses, then there will be a number of thresholds that you need to

think twice about before crossing. For example:

If you sell a product at $10 or under then an end user will charge it to his personal

credit card and not claim it back.

Up to $50, he might charge it to his card and claim it back from the company he works

for.

Up to $995, he might borrow his boss's company credit and charge it directly to the

company.

33

At $1000, he might have to fill in some paperwork and justify, strongly, his reason for

purchasing to his boss.

At $5,000 he might have to talk to the head of his department.

At $25,000 he might have to talk to his CEO.

At each stage, not only does the cost increase, but the hassle does too. If you can

figure out where these thresholds lie (and they move around as the state of the

economy changes, and according to the characteristics of your customers), then it's

worth pricing your software just under a threshold rather than just over it.

Once you cross a threshold, you can often move up to the next one relatively easily. It's

easier to persuade somebody to spend $10 instead of $1 than it is to get them to open

their wallet in the first place.

This is yet one more reason to provide multi-user discounts and bundles. If you're

selling to an organization, then the individual you're selling to will help you cross the

thresholds, and once you're past a threshold he may even be keen to help you beyond

there.

Say you've persuaded Frank, the IT manager of Blue Door Software, to buy a one

hundred user license of the Time Tracker 3000. Frank has negotiated hard and you've

agreed on a price of $25,000. Frank knows that he now needs to persuade Victor, the

CEO, to authorize this expenditure. Victor is a scary, busy man and hard to persuade.

Frank realizes that he may well need some copies of the Task List 400 at some point in

the next six months, and doesn't want to have to persuade Victor twice. He also knows

that, although Blue Door Software currently has one hundred employees, it will

probably grow over the next twelve months. If he's going to ask for $25,000 to buy the

Time Tracker 3000, why not ask for $30,000 and get you to throw in some copies of the

Task List 400 for free? Or for $35,000 and ask for an extra fifty licenses? It's in Frank's

interests, and yours, and Blue Door Software's.

Free

Some people argue that the price of software will inexorably be driven to zero.

Economists have proven that in any efficient market, the cost of a good will be driven

34

down to its marginal cost of production. If you're one of many producers selling

wrenches then consumers will shop around for the cheapest wrench. If it costs $5 to

produce the next wrench, then wrench manufacturers will compete on price,

undercutting each other and driving the price lower and lower, until it's at the lowest

price that still allows them to make a profit: $5.01.

Information, the theory goes, has zero marginal cost. It costs nothing to ship the next

set of bytes to your next customer. Therefore, the price that consumers will pay for

your information, and the cost you must sell it for, will eventually approach zero. The

success of open source operating systems such as Linux, the Apache web server and

the Open Office suite seem to illustrate this point.

This argument has a number of holes in it. For a start, as already discussed, you are

not just selling bits and bytes. You're selling a whole bunch of stuff around it, including

support, documentation and hand-holding. Your customers are buying man-years,

decades even, of your past, present and future blood, sweat and tears. Is that worth

$100? Or $1,000? Heck, yes, and you should tell that to your customers.

Secondly, there is no such thing as a commodity. Or, more accurately, there need not

be such a thing as a commodity. Your job is to de-commodify what you are doing. If

your potential customers consider your to-do list, or your word processor, accounts

package, web site or iPhone app as just one of a hundred indistinguishable others, then

the price you can charge will be driven ever downwards. You need to figure out a way

to either make it stand out, or impossible to compare.

If Starbucks can de-commodify coffee and charge $4 for coffee beans and hot water, if

Stormhoek can de-commodify grapes (the only wine maker I know of who sells branded

G-Strings), and if Perrier can de-commodify water, then you can certainly de-

commodify the complicated software application that you have created.

Despite all this, there is no doubt that 'free' holds a tremendous power over consumers.

And it's a power that you can harness.

Free Trials

Free trials let your customers try out your software for free, to make sure it fits their

needs before they buy it. They don't even need to use the trial for you to benefit. The

35

mere fact that customers could try out your software, if they wanted to, transmits a

strong signal about its quality.

When customers do try out your software, it can increase its perceived value. In a

famous psychology experiment, people who were able to hold a coffee mug were

willing to pay significantly more for it than those who were just allowed to see it. People

start to feel that they own an object before they buy it if they're allowed to use it and,

as we've already seen, people value what they own more than what they don't.

Free trials aren't always possible. Red Gate used to sell a tool that let you recover

deleted data from a SQL Server database. The free trial worked against it: people would

download it and recover their data before their free trial expired. Free trials only work

for software that people use again and again, and where the free trial doesn't fix the

problem by itself.

Similarly, if people require a lot of hand-holding to use your software, or if it is of a low

quality, then free trials are unlikely to work.

The freemium model involves providing a free version of your software for some

people, and a paid-for version for others. Typically, the 'standard' product will be free,

and the 'pro' version will be paid for. Flickr, LinkedIn and Skype all use this model.

However, it's not clear that giving your software away for free is a great way to make

money, despite being extremely fashionable. At the very least, you need to be careful,

and make sure the free version is good enough to be useful, but not so useful that it

cannibalizes paid-for sales. It can also require extremely high volumes to make it work.

Flickr only manages to upsell around 5% of its standard users to its professional

account. And storing, searching and serving the 3.5 billion images Flickr's free

customers store certainly isn't cheap.

In 1993, the UK mobile telephony market was heating up. One2One, a fledgling mobile

telecommunications company backed by Cable & Wireless and US West, decided that

free was the way to go and offered free off-peak local calls to all new customers. The

network was soon overwhelmed as thousands of customers tried, and failed, to get

through, for free, on Christmas day. One2One quickly gained a reputation for

unreliability, losing nearly a million dollars along the way.

36

Flickr has Yahoo, and One2One had Cable & Wireless, but if you adopt the freemium

model without a sugar daddy, then beware.

Network Effects

There is, however, one situation where free is the best price for your product: where

there are strong network effects.

Network effects occur where the value to your customer of using your product

increases as the total number of users increases. For example, the value of using a

telephone increases as the number of people you can call increases; the value of a

social network increases as more people join, the value of e-mail as more people get

accounts, and so on. In these cases, you get a feedback loop: more people use your

application, it becomes more valuable and more people join, and so on.

Free becomes even more important when your networked product has competitors. In

this situation, it turns out there are two stable situations: no customers, or plenty of

customers, and that there is a critical point beyond which user numbers accelerate

quickly. Get past the tipping point and your user base will accelerate rapidly. If you

don't quite reach the tipping point then your user base will shrink back to zero.

If you study Twitter's traffic stats, you can see there's a clear tipping point at the

beginning of 2009. Look at the uptake of the fax machine, the telephone and other

inventions that rely heavily on network effects and you'll see a similar pattern.

It becomes, therefore, extremely important to reach the tipping point as quickly as

possible, and the 'free' price point is a good way of doing that. Of course, once you're

past the tipping point you'll need to make money from your product, without losing

users.

Bargains

Bargains are closely related to free: people like getting something for nothing. Bundling

is a type of free. When you buy Windows, you get Internet Explorer for free. The SQL

Toolbelt gives you 12 applications worth a total of $5140 for only $1595. That's $3545

for free.

37

Put a 'sale' price on one or two products on your web site, and people will assume that

they are, in fact, getting a good deal. But put 'sale' on all your products and people will

assume you're taking them for a ride.

To work best, bargains should be limited to specific products, or specific times. When

Steam, the online gaming community, held a sale on third party games over the

holiday season in 2008, a 10% discount led to an increase of 35% in sales (in dollars,

not units). A 25% discount led to a 245% increase; a 50% sale to a 320% increase and

a 75% discount to a 1,470% increase.

If there's something people like more than getting a bargain, it's getting a bargain and

feeling smart. Just before Christmas 2006, Threshers (a UK wine merchant) offered its

suppliers and friends a 40% discount if they turned up at any store with a special

voucher.

When this voucher was “accidentally” leaked onto the web (on the Stormhoek web site

- we've already met them - and promoted by Hugh MacLeod), word spread like wildfire.

Eventually, millions of people downloaded it. Threshers felt obliged to honor the

voucher. Their customers felt smart and got cheap wine while Threshers made a killing

and promoted their brand.

Apps and App Markets

The phenomonal success of the iPhone–and the smartphone revolution that has

followed in its wake–has brought a brand new way of purchasing software to the table.

Instead of approaching vendors' websites directly, or heading into a bricks-and-mortar

store, consumers are now searching and downloading applications from an app store.

Deciding to sell your software on an app store isn't always an easy decision. If you're

writing software for iOS, your only choice is to sell through Apple's App Store. For other

platforms, there are other options, but all have their own restrictions and fees.

The most immediate concern is the commission each store will charge you for selling

your app through their service. Most app stores will take a 30% cut, which is a large

chunk of your revenue. You may need to weigh up the extra audience against this fee,

reduce your marketing budget, and calculate if it's worth it.

38

The biggest issue when pricing, however, is the lower percieved value of mobile

apps. If we decide to redesign the UI and put Task List 400 into the iPhone App Store,

we instantly devalue our app. We know Task List 400 iPhone is a great application, and

we're selling the Windows and OS X versions for $300 a piece.

But it's the customer's perception of the app that will ultimately dictate the price.

Mobile apps are commoditised. The 'throwaway' nature of lots of apps, combined with

the sheer number of applications available for smartphone platforms, means that most

apps have very low price tags and it's certainly a low-price, high-volume game.

Perhaps we've spent $10,000 creating Task List 400, and we want to see it make a

minimum of $80,000 (a good return, no?) As of 2012, the average app price is $1.92.

How many copies of Task List 400 iPhone do you think we can ship at $1.92? 10,000?

20,000? 50,000?

Quantity 30% Fee Profit

10,000 $5,760 $13,440

20,000 $11,520 $26,880

50,000 $28,800 $67,200

We're still not even close to the $80,000 return we want. And selling 50,000 copies of

anything is very difficult. Let's raise the price slightly, to $2.49. The higher price will

mean less people will want to purchase a copy, so let's say we can only sell 30,000

copies (still a terrific number):

Quantity 30% Fee Profit

30,000 $22,410 $52,290

39

Nope, still not there. It doesn't look like we're going to be able to make this $80,000

after all.

The sad fact is, it's very difficult to shift such large quantities of applications. If you are

confident that your application is unique and provides real value to your customers,

you could price your application a little higher than the average and measure the

results.

A January 2012 report from Distomo about running sales on apps reveals some

interesting information about app prices. On the first day of the sale, the average

revenue increase by 41% in the iPhone App Store, and after two weeks, 22% in total.

On the iPad App Store, the day one effect was even greater: up 52%.

In general, the report finds that a 'perceivably large' discount had a much better effect:

an app dropping from $1.49 to $0.99 had a much greater effect than $7.99 to $5.99.

When you look at the actual figures, you'll find it can be difficult to make a lot of money

by selling apps. It really is a quantities game. Spend time working out how many copies

you can realistically sell and price your app accordingly. The lower your initial

production costs, the easier it will be to make money.

A side note: don't forget that Apple's motives and your motives do not align. Apple

makes money out of a combination of a few blockbuster, headline-grabbing, successful

apps and a massive long tail of apps which individually only bring in a few hundred or a

few thousand dollars but when aggregated are valuable. To Apple. They really don't

care how your particular app does. It's a casino, and in the casino it's the bank who

wins.

Software As A Service

We've talked a lot about how to price software that is sold in a packaged-and-

distributed form; buy a copy and download the executable. Things get more complex,

of course, when dealing with multi-user licenses and new / different versions, but the

essential form of software stays the same.

40

An alternative route taken by a lot of companies is to sell their Software As A Service

(SaaS). This changes some of the details of software pricing, but the principles of

psychology and economics are fundamentally similar.

There are plenty of benefits of this model beyond the obvious one of recurring revenue:

• Paying lots of small amounts is psychologically easier than paying one

large amount. That's why people buy cars with credit cards and pay it back

at 20% interest, or place the cost of holiday that's over in a week on top of

a mortgage that will last 25 years. Although the total amount paid is larger,

it somehow feels smaller.

• If you're selling to businesses, then your end user will find it easier to

justify a small, regular payment to his boss than a single large, one-off

payment.

• Recurring payments promote regular usage. Take members of health clubs.

Those who pay a one-off annual fee tend to use the club intensively for a

few weeks after their hefty payment, but then stop using it. The usage

pattern of people who pay quarterly displays a sawtooth pattern, peaking

shortly after payment and then declining until the next payment. People

who pay monthly show a steadier, higher usage. Importantly, since they

are more regular users, they are also more likely to renew membership and

stay members longer.

A lot of the same techniques for pricing still stand: look at your competition's pricing,

ensure your costs are covered and you make a good margin–or a small margin with

high volume!–and appeal to your customers' sense of fairness. The biggest difference is

that packaged-and-distributed software is sold for a one-off fee; SaaS products have a

recurring charge that reaches into the future.

There are, however, a couple of implications to SaaS pricing. The first is that it requires

more capital than selling a one-off software licence. Let's say you've been selling your

Time Tracker 3000 for $200. It costs you $100 to acquire a customer, so you make

$100 profit for every customer you sign up. You're getting 100 new customers a month,

so you're making $10,000 a month.

41

You've decided that actually the future of time tracking is as an online service. You've

done your research, and you're going to charge $20 a month for the service. On

average, you think a customer will use your service for 24 months, so the life time

value of a customer is nearly $500. Sounds good, but what will happen tomorrow, when

you stop selling the Time Tracker 3000 and start selling the Time Tracker Web Edition?

Let's say you're still getting one hundred new customers a month. But they're only

paying you $20 a month. What's worse is that your customer acquisition cost is still

$100, so in the first month you're losing $80 for every customer you sign up. In other

words, rather than making $10,000 profit like you did last month, you've now made an

$8,000 loss. Of course, in the long term the numbers are going to work in your favour,

but in the short term monthly pricing is going to hurt you.

Your profitability is also going to depend heavily on metrics such as the lifetime value

of a customer and the cost of customer acquisition, so you need to track these closely.

The first number - how much a customer is worth to you over their lifetime - depends

on how likely a customer is to stop using your service in any given month. This means

that you need to spend more effort in making sure your customers' needs are satisfied

over time. Caricaturing the argument somewhat, if a customer who has paid $200 for

the Time Tracker 3000 hits a bug, he's already given you the money, so hey. If he hits

the bug on the Time Tracker Web Edition after two months then he's going to cancel

his contract. Arguably, this is a very good discipline to have, but it does mean that you

need to price your product at a point where you can afford to support your customers

and improve it based on their feedback.

How, then, do you go about pricing a SaaS product?

At the very least you need to charge enough to cover your costs. How much does it

cost to acquire a customer? How long do you think customers will use the system

before? Is there a cost to setting up and maintaining a user in your system?

Beyond this, the other factors we've already discussed come into play. How do your

customers perceive the value of your service? What will they use as reference points?

Can you provide different versions of your service at different price points?

Take the following example from kings (and queens) of Saas, 37signals's project

management tool, Basecamp:

42

Their pricing options are simple and elegant. The tiers get progressively more

expensive as your usage of the application goes up. You're not caught in the same

situation we saw Microsoft Vista in earlier; you know exactly what you're paying for and

what the difference is.

Fixed Contracts

Some companies tie their users in to 12- or 24-month contracts, akin to phone

companies. This can make sense from a business point of view (you get a guaranteed

lump of cash) but will suck for consumers (what if they want to leave?)

A better alternative is to offer discounts to users who subscribe for 12 months. Offer

them 2 months for free, maybe, or a 10% discount. This is win-win: it encourages users

to pay a wedge of cash in advance, so you get a year's worth of capital up front, and

they have the option to pay monthly if they so choose.

43

Offering a yearly plan can also be a benefit to customer retention. Keep track of the

average retention of your customer - the amount of time they keep their account. You

may observe a natural attrition where customers eventually stop using your

application. If you're charging monthly and realise that your average retention is nine

months, it may be worth offering a discounted yearly plan. This will give you three

months of extra revenue you wouldn't have had before.

Yearly billing may also work well if you're selling to corporations with complex approval

processes - they simply may not have the systems in place to easily pay for services

monthly.

Adobe follow an interesting path with the Creative Cloud tools. This offers their Creative

Suite - a bundle of tools that you can buy for a one-off cost of $2599 - for a monthly fee

of $49.99 if you commit to subscribing for 12 months. If you prefer to pay monthly with

no contract then the cost is $74.99. This is interesting on several levels. First of all,

Adobe are assuming that they will increase the number of people who use their tools. I

had personally purchased Photoshop (a one-off cost of $1,299) but would probably

never have upgraded to the last version or bought Premiere Pro (for a one-off cost of

$799). I have, however, subscribed to Creative Cloud. I decided to go for the annual

contract at a monthly fee of $49.99. I figure I can afford that each month (a reference

point: it's less than my phone bill), and I can cancel after a year if I want to. Of course, I

won't - I'm too lazy and I'll be too tied into Adobe tools by then. It turns out that I have

actually used Premiere Pro a couple of time as well. Given the up-front costs of

providing SaaS (see above), this was a gutsy move from Adobe, but in the long term

they're going to make more money out of me, they're probably going to attract more

customers, and I'm happy with the service that I'm getting. Everybody wins.

Pay As You Go

Your customers may not use your application regularly and be unlikely to pay for for a

time period they just won't use. In these scenarios, having a pay as you go price plan is

ideal.

A great example of this is email marketing and distribution service Mailchimp.

Mailchimp provide a pay as you go pricing tier for their customers that don't want to

commit to a monthly or yearly subscription.

44

You prepay your account with credits, and then use the credits to send out emails. This

is perfect for when you use the service infrequently, and is bound to attract a whole

new range of customers that otherwise wouldn't use Mailchimp.

It's clearly more expensive, but is a great way of using the system infrequently, or,

indeed trialing it with a view to subscribe monthly. Which leads me perfectly on to…

Free Trials… Again

Much like in packaged-and-distributed software, some online services offer trials to

customers. This is usually in the form of a free month: 30 days of unrestricted access to

the service before requiring the user to enter their credit card details.

This can have a number of benefits:

• Customers are actively engaging with your system, so you have a real chance

to show them how brilliant your software is

• You can collect their information for marketing later (as long as you provide an

unsubscribe link!)

Whether you like it or not, customers are most likely going to compare your application

to your competitors'. If you offer a trial you are stepping ahead of the game and giving

yourself the best chance.

After all, if you're comparing a system you can touch and play with versus some

screenshots, what would you prefer? As long as your software is good, and you're

targeting the right market, you're bound to have a good conversion rate between trial

and paid account.

Different Ways Of Pricing

The amount you charge for your product isn't the only decision you have to make. You

also need to decide how you want to charge. There are plenty of models:

Subscription. We've already discussed this in the SaaS section.

45

I've already covered the Freemium model, where a small number of paying customers

subsidize the majority of freeloaders. The Gilette model is a twist on the Freemium

model. Gillette famously sells their product in two parts: the razor and the blades. The

razor is cheap, but they make their money on the blades. This strategy is surprisingly

common. Adobe follows a similar strategy with Acrobat. It's free to read documents, but

you need to pay to create them. Hewlett Packard loses money on its printers, but

makes it back on the ink. The first Ford Fiestas were sold at a loss, but Ford recovered

the money on spares and finance. Microsoft and Sony lose money whenever they sell

an X-Box or PlayStation, but make it back on royalties for games.

There are many ways of pricing per user. Common schemes include licensing per

named user, or concurrent user. At Red Gate, we license per user. If you have a team

of ten people, all of whom want to use our software, then you need to buy a ten user

licence. If you can't count the total number of users, or if only a few use it at a time,

then pricing by concurrent user can make sense. This model is often used for server-

based software, such as databases.

Another common licensing model is per processor or per processor core. The

obvious drawback of this model is that processors get faster, and get more cores,

quickly. If, say, you're selling a bug tracking system that's tied to the physical power of

your customers' hardware then Moore's law dictates that they will get double the

benefit of your software every two years, without paying you a penny.

The per physical / virtual server licensing model has the same drawbacks as the per

processor model. As more processors are crammed into physical boxes, your

customers get exponentially increasing benefit for a fixed cost.

The per usage model involves charging users based on how often they use your

software. This could be per megabyte stored, transaction processed, gigabyte

transmitted, or many other options. Historically, this has been less common than other

models but will become more usual as cloud computing takes off and people expect to

pay for computer usage on-demand. One disadvantage of this model is that it can

discourage people from buying since it is unclear, up front, how much the user will

need to pay.

Charging your end user isn't the only way of pricing software. You can choose to give it

away for free and then make money by, for example, charging for consulting,

46

installation and training; or selling advertising. The latter, although a common model

for web sites, is extremely hard to make work. CPM – the cost per thousand

impressions – can be as low as a dollar. In other words, to generate one thousand

dollars of revenue you might need to serve up as many as a million pages. To generate

enough revenue to support a team of three or four people, that means having ten

million page views per month. Most web applications simply aren't going to attract that

sort of traffic.

Giving your customers a choice of licensing models can make sense. For example, if

you're buying Microsoft's SQL Server 2008 then you can choose to license per

processor, or buy a server license and then pay per client who connects. The first

model will cost you $5,999 per processor. For the second option, you'll need to pay

$885 to run it on a single server, and then $162 for each additional user to access the

database.

Many businesses end up with a mixed model. For example, Red Gate combines a one-

off fee with an annual 10% - 25% support and upgrades fee. That way, we get both up-

front revenue and a recurring yearly income.

However, if you choose to do this, you need to be aware of the pitfalls. Support and

upgrades fees aren't just a cheap way of generating cash, and they can pressure you

into releasing software just for the sake of it, at times that are not right for you, your

customers or your product. If you're going to charge your customers regularly, then you

need to make sure they get – or perceive – value regularly.

Shortly after launching Windows XP in 2001, Microsoft introduced its 'Software

Assurance' program. For an annual fee, enterprise customers could get guaranteed

upgrades to next versions of the operating system. In theory, everybody would win:

Microsoft would get a guaranteed revenue stream to fund future development and

customers could spread costs and would get a cheaper upgrade to Microsoft's new

operating system, code name Longhorn, when it shipped in 2003. But Longhorn didn't

ship in 2003. Or 2004. Or 2005. It didn't reach the market until the end of the 2006,

largely neutered, as Windows Vista. And even then most enterprises refused to

upgrade.

47

Choosing the right model

When choosing your pricing model, here are two recommendations. Firstly, be boring.

Secondly, license your software as your customers expect it be licensed – fit in with

their business model.

Red Gate's first product was Aardvark, an online bug tracking system. When we

launched this in early 2000, we decided to follow a usage model. We charged per bug

raised. This made sense from our perspective since the cost of providing the service

was linked to how much our customers used it, but it didn't fit in with the way our

customers worked or expected to be charged. That was our first mistake. Our second

mistake was to forget to be boring, and to call the usage units 'cans of worms'. We

thought it was pretty cool. Our customers had a different opinion, and we quickly

moved to per-user pricing.

There are even worse ways of getting price models wrong. In the late 1990s, The

Dialog Corporation was formed through the merger of Knight-Ridder and MAID plc. It

was in the business of selling data to corporations and government bodies. Users

logged on and searched for information in the six billion pages of information that

Dialog stored.

Dialog decided to implement a per-usage model. Subscribers bought 'DialUnits', and

different actions cost different amounts of DialUnits, depending on how much resource

the action took and the value of the data being accessed. Want to sort your results?

That would cost more than saving them. How much more? It would depend on the type

of database you were searching, and the intensity of your search. Ranking, or removing

duplicate results, was especially resource intensive so cost more DialUnits. Some

actions were free. It took four pages of instructions to explain the pricing model to

customers, and that was after a round of simplification.

In 2001, Dialog then introduced multiple pricing plans and expected users to choose

whether it would be cheaper to use pricing based on usage, or on time. Then there

were different platforms - Dialog Transact, Dialog Advantage and Dialog Enterprise.

Throw in discounts, multiyear options and differing interfaces such as Dialog Classic,

DialogWeb and DialogClassic Web and, as one user put it, thinking of a number,

doubling it and adding your mother's age would have been a clear, better pricing

strategy.

48

Chapter Five

Pricing Perception

Prices are never neutral. They send signals. For example, a high price can signal that

you have a quality product. Consumers assume that expensive perfumes and wine are

better than cheap ones, even in the absence of much evidence.

A low price can tell customers that you're value for money, or that you're special. If

your competitors are selling software at $10,000 a seat, and you're selling yours at

$100, then that says something about you. Of course, you might be saying 'game

changing', but your customers might be hearing 'toy'.

Copy your competitors and you could be indicating that you're just a 'me too' product.

If you're a me-too product, with me-too features and a me-too price, why would people

buy from you, especially if there's already a strong, dominant product in your market?

Whatever price you choose, the signals it sends need to fit in with your brand, and your

brand needs to fit in with your reality. There's no point using a high price to signal that

you have a quality product if you're not willing to spend marketing dollars sustaining

that brand, development dollars making that quality a reality and customer service

dollars providing the level of service people expect from a quality brand.

In 1996, McDonalds launched the Arch Deluxe in an attempt to create a burger for a

more sophisticated, adult consumer. To recoup the extra cost of the higher quality

ingredients and the $200 million dollar marketing campaign, McDonalds priced the new

sandwich 32 cents higher than a Big Mac. But the product they tried to create (high

quality, premium) conflicted with the McDonalds brand (cheap and convenient) and the

Arch Deluxe flopped. One argument could be that they priced the burger too low, and

that a 32 cent premium did not send enough of a quality signal.

Your business model and your strategy have to support your pricing model. If you have

expensive sales people driving expensive cars, taking your customers' CEOs out to golf,

and end users who expect plenty of hand-holding and customization of the software

you sell them, then you can't sustain a low price point. Similarly, if you're selling shrink-

wrapped, mass-market software over the web then a high price point will be counter-

productive.

When Red Gate tried to get into the automated web load testing market one of the

reasons we failed (there were plenty of others, including a product that wasn't up to

scratch) was that we attempted a low-price, high-volume approach in a market

50

dominated by high-price solutions. We figured that consumers would love a product

that they could just download, try and then buy, but it turned out that our customers

wanted much more handholding than we were able to provide. For the most part, they

didn't want a product, they wanted a people-intensive service and the reassurance that

a big-name, expensive vendor could provide. Our load testing tool was moderately

successful, but it achieved nothing like the success we had dreamed of.

The dotcom boom and bust contains plenty of illustrations of companies who failed to

align their pricing with their business model. For example, Kozmo.com's business was

built around delivering snacks, DVD rentals and Starbucks coffee, within an hour, to

city dwellers. Unfortunately, the low price, high volume business model it chose

clashed with the reality of the expense of delivering small items by bike courier. This

could have worked as a high price, low volume business model, as the butlers of

English aristocrats will testify.

Switching strategies can be hard. For example, when Intel introduced the 8080

processor, it priced it at $340. Ultimately, it was selling for $2 a unit, but Intel found it

very hard to shake the initial imprinting of the high cost in people's minds.

Practice Trumps Theory

You've read a lot of theory here. Wherever I can, I've based it on my experience and

sound research (you can find some of my sources in the bibliography later on). But your

own circumstances are different to any of those described here, so never forget that

practice trumps theory.

Product pricing is as much art and craft as it is science. Sure, it helps to understand the

economics and psychology of pricing, but theory can only tell you so much. At some

point, you need to make a decision and do it. Use the information in this handbook to

make an informed stab at what a good price would look like, and how your customers

will react, and try it out. The exact price almost doesn't matter – get it broadly right,

don't screw up totally – and you can tweak it later.

You're never going to know if you've chosen the exact right price or not, but you should

experiment once you've set your initial price. Not experiment in the scientific sense of

forming a hypothesis, changing a single variable, and accepting or rejecting the

hypothesis, but in the sense of changing something and seeing what happens.

51

Scientific experiments are simply too hard to do, and the results too ambiguous, to be

much use in pricing. Too many variables change. When you change your prices, you'll

probably do it when you release a new version of your product, or it will coincide with a

big marketing push, or some other variable you cannot control, such as the state of the

economy or the reaction of a competitor, will interfere.

Although scientifically purer, it often doesn't make sense to change a single variable at

a time. Theoretically, you shouldn't change the price of your product, your discounting

strategy and the types of bundle that you sell, all at the same time. But practically, it

can be the right thing to do. It's more useful to fix the problem than to understand why

it's broken. When a scientist goes on a blind date that doesn't work out then, in theory,

he should fix one variable at a time, and re-run the date. First, he should change the

partner but go to the same film and buy the same flowers. Next, he should keep the

partner the same, vary the film and keep the flowers the same, and so forth. But the

pragmatist in him will, or should, change the girl, the film, the flowers, and buy some

new clothes and shave too. If it works, he might not understand why, but at least he'll

have a girlfriend.

In the old days, experiments were easy to run. You'd A/B test, splitting your customers

into random groups, post each group a different leaflet with a different price and

measure the outcome. Nowadays, this is risky. The Internet makes it easy for people to

figure out what other people are paying.

You might be tempted to first run a survey, testing how customers might react to a

proposed new pricing model, or change to an existing one. However, surveys rarely

work. There is always a disconnect between customers' words and their actions. When

McDonalds launched its Arch Deluxe burger (see above), consumers in focus groups

loved it, and 80% said they'd buy it. Few of them did.

How To Change Your Pricing

You might be worried about how your customers will react when you change your

prices. Don't be. For most of us, our customers have better things to worry about. If we

shift our prices from $100 to $150 then most people won't notice, and of those who do

notice very few will care. If you bought a copy of SQL Compare from the Red Gate web

site in 2000 it would have cost you $50. Do the same thing now, and you'll find the

price is $395. Buy the full suite of tools and expect to pay $1,595.

52

Of course, at Red Gate we've reached that price over the course of almost a decade.

We've spent millions of dollars developing the software, and tens of man years. The

increase in value that our customers get from our software vastly outweighs the

increase in its cost. But, of the hundreds of thousands of customers we have, only a

handful have ever commented when the price went up.

It's not what your customers say that's important, it's how they behave. Whenever you

make a price change, pay close attention to what your customers do. If they stop

buying, rethink.

If, however, you are running a subscription model then you should consider what you

want to do with your current customers. If they signed up at $10 a month, and you've

decided to increase the price to $20 a month, think hard about how you want to treat

them.

53

Chapter Six

Product Pricing Checklist

Wrapping up, here's a checklist to help you decide your pricing:

What’s your strategy?

Are you going to price low and sell lots, or price high and sell a few? How does this fit

into your brand, the product you have and the image you want to project?

What’s your product?

Don't forget that it's not just the software that you're selling. It's the entire package

around it.

How will your customers judge the fairness of your pricing?

What reference points will they use? How will they determine what seems right? Will

they baulk at the price you choose, or will they accept it?

Who are your customers?

How does their business work, and how do they expect to be charged? How much

money do they have? Do they prefer a one-off fee, or a monthly subscription? Get

under their skin.

Who are your competitors?

How will they react to your pricing? How much more, or less, valuable is your product

than theirs? What is their business model? What are their prices? If you undercut them,

will you trigger a price war? If you do, are your pockets deep enough for you to win it?

Do you want to co-exist with your competitors, or destroy them?

How are you going to sell your software?

Do you need to send out sales people to take customers golfing? Or are you planning

low-touch sales over the internet? Will you require a telesales team? How much will

55

each sale cost you? Do you need to sell via a channel or reseller? What cut will they

take?

Can you segment your customers, and create versions?

Is your software worth different amounts to different people, and can you create pricing

that reflects that? Students and business people for example, or normal and power

users, or maybe you can split by geography or taste.

How can you bundle your software?

Can you create a larger package that contains more than one software product?

Make an informed guess at your price

Despite all the psychology and economics, you ultimately just have to pick a price.

Some price – any price – is better than no price.

Try it out

Practice trumps theory. Try out your pricing and see what happens. If you've got your

pricing broadly right - and if you've got this far you should do - then you can tweak it

later.

56

Summary & Bibliography

In this usefully short guide to software pricing, we've examined a bunch of useful

techniques to better pricing your software. I hope you've got something out of the past

60 pages. If you have, then please forward the eBook onto your friends and colleagues,

tweet about it and share it around your network.

If you spot any errors in this book, it would be amazing if you could submit it to the

errata page at https://efendibooks.com/minibooks/dont-just-roll-the-dice/errata/. If you

think I've left something out, or got something wrong, then drop me an e-mail at

neil.davidson@red-gate.com, or get in touch with me via Twitter, @neildavidson.

Bibliography / Further Reading

Anderson, E . and Simester, D. (2003) 'Minding your pricing cues', Harvard Business

Review, September 2003

Breckon, N. (2009) 'Valve: Left 4 dead half-price sale saw 3000% increase, beat launch

numbers' http://www.shacknews.com/onearticle.x/57308

Chapman, R. (2006) 'In Search of Stupidity' ,2nd ed, Apress, Berkeley

Crampes, C . and Laffont, J-J. (2002) 'Copying and software pricing'

Cusumano, M. (2007) 'The changing labyrinth of software pricing', Communications of

the ACM, Vol. 50, Issue 7, pp. 19-22

Davidow, W. (1986) 'Marketing high technology - an insider's view', The Free Press,

New York

Distimo (2012) 'Distimo Report'

Gallaugher, J. and Wallace, E. (2002) 'Understanding network effects in software

markets: evidence from web server pricing', MIS Quarterly, Vol. 26, No. 4, pp. 303-327

Gilbert, A. (2003) 'CRM software or CRM shelfware?' http://news.cnet.com/CRM-

software-or-CRM-shelfware/2100-1012_3-990880.html

58

mailto:neil.davidson@red-gate.com
https://twitter.com/neildavidson

Gourville, J. and Soman, D. (2002) 'Pricing and the psychology of consumption', Harvard

Business Review, September 2002

Gourville, J. (2006) 'Eager sellers and stony buyers', Harvard Business Review, June

2006

Gourville, J. and Soman, D. (2005) 'Overchoice and assortment type: when and why

variety backfires', Marketing Science, Vol. 24, No. 3, pp. 382-395

Gourville, J. and Soman, D. (2001) 'Transaction decoupling: how price bundling affects

the decision to consume', Journal of Marketing Research, Vol. 38, pp. 30-44

Gourville, J. and Soman, D. (2007) 'Extremeness seeking: when and why consumers

prefer the extremes', Harvard Business Review

Harford, T. (2008) 'Business life: Fair trade or foul' http://timharford.com/2008/04/

business-life-fair-trade-or-foul/

Knopf, J. (2000) 'The Origin of Shareware' - http://www.asp-shareware.org/users/history-

of-shareware.asp

Levitt, T. (1980) 'Marketing success through differentiation - of anything', Harvard

Business Review, January - February 1980

Macrovision (2007) 'Key trends in software pricing and licensing'

Mason, M. (2008) 'The pirate's dilemma', The Free Press, New York

Miller, P. (2006) 'Sony losing mad loot on each PS3' http://www.engadget.com/2006/11/

16/sony-losing-mad-loot-on-each-ps3/

Murph, D. (2006) 'Wii Manufacturing Costs ring up to just $158?'

http://www.engadget.com/2006/12/15/wii-manufacturing-costs-ring-up-to-just-158/

Packard, D. (1996) 'The HP Way', HarperCollins, New York

59

Quint, B. (2001) 'Dialog rolls out new connect-time pricing' http://www.allbusiness.com/

sales/1012692-1.html

Sink, E. (2004) 'Product Pricing Primer', http://www.ericsink.com/bos/

Product_Pricing.html

Spolsky, J. (2004) 'Camels and Rubber Duckies' http://joelonsoftware.com/articles/

CamelsandRubberDuckies.html

Spolsky, J. (2006) 'Simplicity' - http://www.joelonsoftware.com/items/2006/12/09.html

Stiff, D. (2007) 'How DeWALT turned customers into influencers'

http://credibilitybranding.typepad.com/blog/2007/03/how_dewalt_turn.html

Sutton, J. (2001) 'Technology and market structure', 2nd ed, The MIT Press

Varian, H. (2003) 'Intermediate Microeconomics', 6th ed, W.M. Norton, New York

Wendt O., von Westarp, F. And KÃ¶nig, W. (2000) 'Pricing in Network Effect Markets',

ECIS Proceedings, Paper 82

Wayne, B. (2009) 'YouTube is doomed (GOOG)' http://www.businessinsider.com/is-

youtube-doomed-2009-4

Wikipedia – '3DO Interactive Multiplayer' - http://en.wikipedia.org/wiki/

3DO_Interactive_Multiplayer

60

efefendiendi
bookbookss
Smart, succinct books for web
developers

https://efendibooks.com

https://efendibooks.com
https://efendibooks.com
https://efendibooks.com

	Table Of Contents
	About The Authors
	About The Reviewers

	Neil’s Foreword
	Jamie’s Foreword

	An Introduction To Don’t Just Roll The Dice
	Chapter 1 - Economics
	Chapter 2 - Pricing Psychology
	What Is Your Product?
	Perceived Value
	How People Set Their Perceptions
	Increasing Perceived Values
	Signposts

	Chapter 3 - Pricing Pitfalls
	Competitors
	Fairness
	Pirates
	Switching Costs
	Should You Take Your Costs Into Account?

	Chapter 4 - Advanced Pricing
	Versioning
	Bundling
	Multi-user Licenses
	Site Licenses

	The Purchasing Process
	Free
	Free Trials
	Network Effects

	Bargains
	Apps and App Markets
	Software As A Service
	Fixed Contracts
	Pay As You Go
	Free Trials… Again

	Different Ways Of Pricing
	Choosing the right model

	Chapter 5 - Pricing Perception
	Practice Trumps Theory
	How To Change Your Pricing

	Chapter 6 - Product Pricing Checklist
	What’s your strategy?
	What’s your product?
	How will your customers judge the fairness of your pricing?
	Who are your customers?
	Who are your competitors?
	How are you going to sell your software?
	Can you segment your customers, and create versions?
	How can you bundle your software?
	Make an informed guess at your price
	Try it out

	Summary
	Bibliography / Further Reading

	efendi books
	Smart, succinct books for web developers
	https://efendibooks.com

