
ar
X

iv
:1

70
2.

03
27

5v
1 

 [
cs

.L
G

] 
 1

0 
Fe

b 
20

17

Batch Renormalization: Towards Reducing Minibatch Dependence

in Batch-Normalized Models

Sergey Ioffe

Google Inc., sioffe@google.com

Abstract

Batch Normalization is quite effective at accelerating and

improving the training of deep models. However, its ef-

fectiveness diminishes when the training minibatches are

small, or do not consist of independent samples. We hy-

pothesize that this is due to the dependence of model layer

inputs on all the examples in the minibatch, and differ-

ent activations being produced between training and infer-

ence. We propose Batch Renormalization, a simple and

effective extension to ensure that the training and infer-

ence models generate the same outputs that depend on in-

dividual examples rather than the entire minibatch. Mod-

els trained with Batch Renormalization perform substan-

tially better than batchnorm when training with small or

non-i.i.d. minibatches. At the same time, Batch Renor-

malization retains the benefits of batchnorm such as in-

sensitivity to initialization and training efficiency.

1 Introduction

Batch Normalization (“batchnorm” [6]) has recently be-

come a part of the standard toolkit for training deep net-

works. By normalizing activations, batch normalization

helps stabilize the distributions of internal activations as

the model trains. Batch normalization also makes it pos-

sible to use significantly higher learning rates, and reduces

the sensitivity to initialization. These effects help accel-

erate the training, sometimes dramatically so. Batchnorm

has been successfully used to enable state-of-the-art ar-

chitectures such as residual networks [5].

Batchnorm works on minibatches in stochastic gradient

training, and uses the mean and variance of the minibatch

to normalize the activations. Specifically, consider a par-

ticular node in the deep network, producing a scalar value

for each input example. Given a minibatch B of m ex-

amples, consider the values of this node, x1 . . . xm. Then

batchnorm takes the form:

x̂i ←
xi − µB

σB

where µB is the sample mean of x1 . . . xm, and σ2
B

is the

sample variance (in practice, a small ǫ is added to it for

numerical stability). It is clear that the normalized ac-

tivations corresponding to an input example will depend

on the other examples in the minibatch. This is undesir-

able during inference, and therefore the mean and vari-

ance computed over all training data can be used instead.

In practice, the model usually maintains moving averages

of minibatch means and variances, and during inference

uses those in place of the minibatch statistics.

While it appears to make sense to replace the mini-

batch statistics with whole-data ones during inference,

this changes the activations in the network. In particular,

this means that the upper layers (whose inputs are normal-

ized using the minibatch) are trained on representations

different from those computed in inference (when the in-

puts are normalized using the population statistics). When

the minibatch size is large and its elements are i.i.d. sam-

ples from the training distribution, this difference is small,

and can in fact aid generalization. However, minibatch-

wise normalization may have significant drawbacks:

For small minibatches, the estimates of the mean and

variance become less accurate. These inaccuracies are

compounded with depth, and reduce the quality of re-

sulting models. Moreover, as each example is used to

compute the variance used in its own normalization, the

normalization operation is less well approximated by an

affine transform, which is what is used in inference.

Non-i.i.d. minibatches can have a detrimental effect on

models with batchnorm. For example, in a metric learn-

ing scenario (e.g. [4]), it is common to bias the minibatch

sampling to include sets of examples that are known to

be related. For instance, for a minibatch of size 32, we

may randomly select 16 labels, then choose 2 examples

for each of those labels. Without batchnorm, the loss

computed for the minibatch decouples over the examples,

and the intra-batch dependence introduced by our sam-

pling mechanism may, at worst, increase the variance of

the minibatch gradient. With batchnorm, however, the ex-

amples interact at every layer, which may cause the model

to overfit to the specific distribution of minibatches and

suffer when used on individual examples.

The dependence of the batch-normalized activations on

the entire minibatch makes batchnorm powerful, but it

is also the source of its drawbacks. Several approaches

[1, 2, 10] have been proposed to alleviate this. How-

ever, unlike batchnorm which can be easily applied to a

network, these methods may require careful analysis of

nonlinearities, may need to be combined with minibatch

centering, and may change the class of functions repre-

1

http://arxiv.org/abs/1702.03275v1


sentable by the model. Another alternative [9] is to use

a separate and fixed minibatch to compute the normaliza-

tion parameters, but this makes the training more expen-

sive.

In this paper we propose Batch Renormalization, a new

extension to batchnorm. Our method ensures that the ac-

tivations computed in the forward pass of the training step

depend only on a single example and are identical to the

activations computed in inference. This significantly im-

proves the training on non-i.i.d. or small minibatches,

compared to batchnorm, without incurring extra cost.

2 Prior Work: Batch Normalization

We are interested in stochastic gradient optimization of

deep networks. The task is to minimize the loss, which

decomposes over training examples:

Θ = argmin
Θ

1

N

N∑

i=1

ℓi(Θ)

where ℓi is the loss incurred on the ith training example,

and Θ is the vector of model weights. At each training

step, a minibatch of m examples is used to compute the

gradient
1

m

∂ℓi(Θ)

∂Θ
which the optimizer uses to adjust Θ.

Consider a particular node x in a deep network. We

observe that x depends on all the model parameters that

are used for its computation, and when those change, the

distribution of x also changes. Since x itself affects the

loss through all the layers above it, this change in distri-

bution complicates the training of the layers above. This

has been referred to as internal covariate shift. Batch Nor-

malization [6] addresses it by considering the values of x
in a minibatch B = {x1...m}. It then normalizes them as

follows:

µB ←
1

m

m∑

i=1

xi

σB ←

√√√√ 1

m

m∑

i=1

(xi − µB)2 + ǫ

x̂i ←
xi − µB

σB

yi ← γx̂i + β ≡ BN(xi)

Here γ and β are trainable parameters (learned using the

same procedure, such as stochastic gradient descent, as all

the other model weights), and ǫ is a small constant. Cru-

cially, the computation of the sample mean µB and sample

standard deviation σB are part of the model architecture,

are themselves functions of the model parameters, and as

such participate in backpropagation. The backpropaga-

tion formulas for batchnorm are easy to derive by chain

rule and are given in [6].

When applying batchnorm to a layer of activations x,

the normalization takes place independently for each di-

mension (or, in the convolutional case, for each channel

or feature map). When x is itself a result of applying a lin-

ear transform W to the previous layer, batchnorm makes

the model invariant to the scale of W (ignoring the small

ǫ). This invariance makes it possible to not be picky about

weight initialization, and to use larger learning rates.

Besides the reduction of internal covariate shift, an in-

tuition for another effect of batchnorm can be obtained

by looking at the gradients computed by backpropaga-

tion for different layers. Consider the normalized layer x̂,

whose elements all have zero mean and unit variance. For

a thought experiment, let us assume that the dimensions of

x̂ are Gaussian and independent. Further, let us approxi-

mate the loss ℓ as a linear function of x̂: ℓ = gT x̂, where

g = ∂ℓ
∂x̂ . It then follows that ‖g‖2 = Var[ℓ] which only

depends on the model loss and not the layer we picked.

This means that the norm of the gradient w.r.t. a nor-

malized layer ‖ ∂ℓ∂x̂‖ is the same for different normalized

layers. Therefore the gradients, as they flow through the

network, do not explode nor vanish, thus facilitating the

training. While the assumptions of independence, Gaus-

sianity and linearity do not hold in practice, the gradient

flow is in fact significantly improved in batch-normalized

models.

During inference, the standard practice is to normalize

the activations using the moving averages µ, σ2 instead of

minibatch mean µB and variance σ2
B

:

yinference =
x− µ

σ
· γ + β

which depends only on a single input example rather than

requiring a whole minibatch.

It is natural to ask whether we could simply use the

moving averagesµ, σ to perform the normalization during

training, since this would remove the dependence of the

normalized activations on the other example in the mini-

batch. This, however, has been observed to lead to the

model blowing up. As argued in [6], such use of mov-

ing averages would cause the gradient optimization and

the normalization to counteract each other. For example,

the gradient step may increase a bias or scale the convo-

lutional weights, in spite of the fact that the normalization

would cancel the effect of these changes on the loss. This

would result in unbounded growth of model parameters

without actually improving the loss. It is thus crucial to

use the minibatch moments, and to backpropagate through

them.

3 Batch Renormalization

With batchnorm, the activities in the network differ be-

tween training and inference, since the normalization is

done differently between the two models. Here, we aim

to rectify this, while retaining the benefits of batchnorm.

2



Let us observe that if we have a minibatch and normal-

ize a particular node x using either the minibatch statis-

tics or their moving averages, then the results of these two

normalizations are related by an affine transform. Specif-

ically, let µ be an estimate of the mean of x, and σ be an

estimate of its standard deviation, computed perhaps as a

moving average over the last several minibatches. Then,

we have:

xi − µ

σ
=

xi − µB

σB

·r+d, where r =
σB

σ
, d =

µB − µ

σ

If σ = E[σB] and µ = E[µB], then E[r] = 1 and E[d] = 0
(the expectations are w.r.t. a minibatch B). Batch Nor-

malization, in fact, simply sets r = 1, d = 0.

We propose to retain r and d, but treat them as con-

stants for the purposes of gradient computation. In other

words, we augment a network, which contains batch nor-

malization layers, with a per-dimension affine transforma-

tion applied to the normalized activations. We treat the

parameters r and d of this affine transform as fixed, even

though they were computed from the minibatch itself. It

is important to note that this transform is identity in ex-

pectation, as long as σ = E[σB] and µ = E[µB]. We refer

to batch normalization augmented with this affine trans-

form as Batch Renormalization: the fixed (for the given

minibatch) r and d correct for the fact that the minibatch

statistics differ from the population ones. This allows the

above layers to observe the “correct” activations – namely,

the ones that would be generated by the inference model.

In practice, it is beneficial to train the model for a cer-

tain number of iterations with batchnorm alone, without

the correction, then ramp up the amount of allowed cor-

rection. We do this by imposing bounds on r and d, which

initially constrain them to 1 and 0, respectively, and then

are gradually relaxed.

Algorithm 1 presents Batch Renormalization. Unlike

batchnorm, where the moving averages are computed dur-

ing training but used only for inference, Batch Renorm

does use µ and σ during training to perform the correc-

tion. We use a fairly high rate of update ∆ for these aver-

ages, to ensure that they benefit from averaging multiple

batches but do not become stale relative to the model pa-

rameters. We explicitly update the exponentially-decayed

moving averages µ and σ, and optimize the rest of the

model using gradient optimization, with the gradients cal-

Input: Values of x over a training mini-batch B =
{x1...m}; parameters γ, β; current moving mean µ and

standard deviation σ; moving average update rate ∆;

maximum allowed correction rmax, dmax.

Output: {yi = BatchRenorm(xi)}; updated µ, σ.

µB ←
1

m

m∑

i=1

xi

σB ←

√√√√ǫ+
1

m

m∑

i=1

(xi − µB)2

r ← stop gradient

(
clip[1/rmax,rmax]

(σB

σ

))

d← stop gradient

(
clip[−dmax,dmax]

(
µB − µ

σ

))

x̂i ←
xi − µB

σB

· r + d

yi ← γ x̂i + β

µ := µ+∆(µB − µ) // Update moving averages

σ := σ +∆(σB − σ)

Inference: y ← γ ·
x− µ

σ
+ β

Algorithm 1: Training (top) and inference (bottom) with

Batch Renormalization, applied to activation x over a

mini-batch. During backpropagation, standard chain rule

is used. The values marked with stop gradient are

treated as constant for a given training step, and the gra-

dient is not propagated through them.

culated via backpropagation:

∂ℓ

∂x̂i
=

∂ℓ

∂yi
· γ

∂ℓ

∂σB

=

m∑

i=1

∂ℓ

∂x̂i
· (xi − µB) ·

−r

σ2
B

∂ℓ

∂µB

=

m∑

i=1

∂ℓ

∂x̂i
·
−r

σB

∂ℓ

∂xi
=

∂ℓ

∂x̂i
·
r

σB

+
∂ℓ

∂σB

·
xi − µB

mσB

+
∂ℓ

∂µB

·
1

m

∂ℓ

∂γ
=

m∑

i=1

∂ℓ

∂yi
· x̂i

∂ℓ

∂β
=

m∑

i=1

∂ℓ

∂yi

These gradient equations reveal another interpretation of

Batch Renormalization. Because the loss ℓ is unaffected

when all xi are shifted or scaled by the same amount,

3



the functions ℓ({xi + t}) and ℓ({xi · (1 + t)}) are con-

stant in t, and computing their derivatives at t = 0 gives∑m
i=1

∂ℓ
∂xi

= 0 and
∑m

i=1 xi
∂ℓ
∂xi

= 0. Therefore, if we

consider the m-dimensional vector
{

∂ℓ
∂xi

}
(with one ele-

ment per example in the minibatch), and further consider

two vectors p0 = (1, . . . , 1) and p1 = (x1, . . . , xm), then{
∂ℓ
∂xi

}
lies in the null-space of p0 and p1. In fact, it is easy

to see from the Batch Renorm backprop formulas that to

compute the gradient
{

∂ℓ
∂xi

}
from

{
∂ℓ
∂x̂i

}
, we need to first

scale the latter by r/σB , then project it onto the null-space

of p0 and p1. For r = σB

σ , this is equivalent to the back-

prop for the transformation x−µ
σ , but combined with the

null-space projection. In other words, Batch Renormal-

ization allows us to normalize using moving averages µ,

σ in training, and makes it work using the extra projection

step in backprop.

Batch Renormalization shares many of the beneficial

properties of batchnorm, such as insensitivity to initial-

ization and ability to train efficiently with large learning

rates. Unlike batchnorm, our method ensures that that all

layers are trained on internal representations that will be

actually used during inference.

4 Results

To evaluate Batch Renormalization, we applied it to the

problem of image classification. Our baseline model is

Inception v3 [12], trained on 1000 classes from ImageNet

training set [8], and evaluated on the ImageNet validation

data. In the baseline model, batchnorm was used after

convolution and before the ReLU [7]. To apply Batch

Renorm, we simply swapped it into the model in place

of batchnorm. Both methods normalize each feature map

over examples as well as over spatial locations. We fix

the scale γ = 1, since it could be propagated through the

ReLU and absorbed into the next layer.

The training used 50 synchronized workers [3]. Each

worker processed a minibatch of 32 examples per train-

ing step. The gradients computed for all 50 minibatches

were aggregated and then used by the RMSProp optimizer

[13]. As is common practice, the inference model used

exponentially-decayed moving averages of all model pa-

rameters, including the µ and σ computed by both batch-

norm and Batch Renorm.

For Batch Renorm, we used rmax = 1, dmax = 0 (i.e.

simply batchnorm) for the first 5000 training steps, after

which these were gradually relaxed to reach rmax = 3 at

40k steps, and dmax = 5 at 25k steps. These final val-

ues resulted in clipping a small fraction of rs, and none of

ds. However, at the beginning of training, when the learn-

ing rate was larger, it proved important to increase rmax

slowly: otherwise, large gradients were observed to sud-

denly and severely increase the loss. We have found clip-

ping to be less important for those Batch Renorm layers

that are followed by another normalization layer. The in-

tuition is that for such layers, scaling up all the corrections

0k 20k 40k 60k 80k 100k 120k 140k

Training steps

30

40

50

60

70

80

A
cc

u
ra

cy
 (
%

)

Baseline (78.3%)

Batch Renormalization (78.5%)

Figure 1: Validation top-1 accuracy of Inception-v3 model

with batchnorm and its Batch Renorm version, trained on

50 synchronized workers, each processing minibatches of

size 32. The Batch Renorm model achieves a marginally

higher validation accuracy.

r will leave the model output and gradients unchanged

since the next normalization layer will cancel out the ef-

fects the larger correction.

All the hyperparameters other than those related to nor-

malization were fixed between the models and across ex-

periments.

4.1 Baseline

As a baseline, we trained the batchnorm model using the

minibatch size of 32. More specifically, batchnorm was

applied to each of the 50 minibatches; each example was

normalized using 32 examples, but the resulting gradi-

ents were aggregated over 50 minibatches. This model

achieved the top-1 validation accuracy of 78.3% after

130k training steps.

To verify that Batch Renorm does not diminish perfor-

mance on such minibatches, we also trained the model

with Batch Renorm, see Figure 1. The test accuracy

of this model closely tracked the baseline, achieving a

slightly higher test accuracy (78.5%) after the same num-

ber of steps.

4.2 Small minibatches

To investigate the effectiveness of Batch Renorm when

training on small minibatches, we reduced the number of

examples used for normalization to 4. Each minibatch of

size 32 was thus broken into “microbatches” each hav-

ing 4 examples; each microbatch was normalized inde-

pendently, but the loss for each minibatch was computed

as before. In other words, the gradient was still aggre-

gated over 1600 examples per step, but the normalization

4



0k 20k 40k 60k 80k 100k 120k 140k 160k

Training steps

30

40

50

60

70

80

A
cc

u
ra

cy
 (
%

)

Batchnorm (74.2%)

Batch Renormalization (76.5%)

Figure 2: Validation accuracy for models trained with ei-

ther batchnorm or Batch Renorm, where normalization is

performed for sets of 4 examples (but with the gradients

aggregated over all 50× 32 examples processed by the 50

workers). Batch Renorm allows the model to train faster

and achieve a higher accuracy, although normalizing sets

of 32 examples performs better.

involved groups of 4 examples rather than 32 as in the

baseline. Figure 2 shows the results.

The validation accuracy of the batchnorm model is sig-

nificantly lower than the baseline that normalized over

minibatches of size 32, and training is slow, achieving

74.2% at 210k steps. We obtain a substantial improve-

ment much faster (76.5% at 130k steps) by replacing

batchnorm with Batch Renorm, However, the resulting

test accuracy is still below what we get when applying ei-

ther batchnorm or Batch Renorm to size 32 minibatches.

Although Batch Renorm improves the training with small

minibatches, it does not eliminate the benefit of having

larger ones.

4.3 Non-i.i.d. minibatches

When examples in a minibatch are not sampled indepen-

dently, batchnorm can perform rather poorly. However,

sampling with dependencies may be necessary for tasks

such as for metric learning [4, 11]. We may want to en-

sure that images with the same label have more similar

representations than otherwise, and to learn this we re-

quire that a reasonable number of same-label image pairs

can be found within the same minibatch.

In this experiment (Figure 3), we selected each mini-

batch of size 32 by randomly sampling 16 labels (out of

the total 1000) with replacement, then randomly select-

ing 2 images for each of those labels. When training with

batchnorm, the test accuracy is much lower than for i.i.d.

minibatches, achieving only 67%. Surprisingly, even the

training accuracy is much lower (72.8%) than the test ac-

curacy in the i.i.d. case, and in fact exhibits a drop that is

0k 20k 40k 60k 80k 100k 120k 140k

Training steps

30

40

50

60

70

80

A
cc

u
ra

cy
 (
%
)

Batchnorm (67.0%)

Batchnorm, train accuracy (72.8%)

Non-i.i.d. in test, using µB, σB (76.5%)

Batchnorm on half-minibatches (77.4%)

Batch Renormalization (78.6%)

Figure 3: Validation accuracy when training on non-i.i.d.

minibatches, obtained by sampling 2 images for each of

16 (out of total 1000) random labels. This distribution

bias results not only in a low test accuracy, but also low

accuracy on the training set, with an eventual drop. This

indicates overfitting to the particular minibatch distribu-

tion, which is confirmed by the improvement when the test

minibatches also contain 2 images per label, and batch-

norm uses minibatch statistics µB, σB during inference. It

improves further if batchnorm is applied separately to 2

halves of a training minibatch, making each of them more

i.i.d. Finally, by using Batch Renorm, we are able to just

train and evaluate normally, and achieve the same vali-

dation accuracy as we get for i.i.d. minibatches in Fig.

1.

consistent with overfitting. We suspect that this is in fact

what happens: the model learns to predict labels for im-

ages that come in a set, where each image has a counter-

part with the same label. This does not directly translate to

classifying images individually, thus producing a drop in

the accuracy computed on the training data. To verify this,

we also evaluated the model in the “training mode”, i.e.

using minibatch statistics µB , σB instead of moving aver-

ages µ, σ, where each test minibatch had size 50 and was

obtained using the same procedure as the training mini-

batches – 25 labels, with 2 images per label. As expected,

this does much better, achieving 76.5%, though still below

the baseline accuracy. Of course, this evaluation scenario

is usually infeasible, as we want the image representation

to be a deterministic function of that image alone.

We can improve the accuracy for this problem by split-

ting each minibatch into two halves of size 16 each, so

that for every pair of images belonging to the same class,

one image is assigned to the first half-minibatch, and the

other to the second. Each half is then more i.i.d., and

this achieves a much better test accuracy (77.4% at 140k

steps), but still below the baseline. This method is only

applicable when the number of examples per label is small

(since this determines the number of microbatches that a

5



minibatch needs to be split into).

With Batch Renorm, we simply trained the model with

minibatch size of 32. The model achieved the same test

accuracy (78.5% at 120k steps) as the equivalent model

on i.i.d. minibatches, vs. 67% obtained with batchnorm.

By replacing batchnorm with Batch Renorm, we ensured

that the inference model can effectively classify individ-

ual images. This has completely eliminated the effect of

overfitting the model to image sets with a biased label dis-

tribution.

5 Conclusions

We have demonstrated that Batch Normalization, while

effective, is not well suited to small or non-i.i.d. training

minibatches. We hypothesized that these drawbacks are

due to the fact that the activations in the model, which are

in turn used by other layers as inputs, are computed dif-

ferently during training than during inference. We address

this with Batch Renormalization, which replaces batch-

norm and ensures that the outputs computed by the model

are dependent only on the individual examples and not the

entire minibatch, during both training and inference.

Batch Renormalization extends batchnorm with a per-

dimension correction to ensure that the activations match

between the training and inference networks. This correc-

tion is identity in expectation; its parameters are computed

from the minibatch but are treated as constant by the opti-

mizer. Unlike batchnorm, where the means and variances

used during inference do not need to be computed until

the training has completed, Batch Renormalization bene-

fits from having these statistics directly participate in the

training. Batch Renormalization is as easy to implement

as batchnorm itself, runs at the same speed during both

training and inference, and significantly improves training

on small or non-i.i.d. minibatches. Our method does have

extra hyperparameters: the update rate ∆ for the mov-

ing averages, and the schedules for correction limits dmax,

rmax. A more extensive investigation of the effect of these

is a part of future work.

Batch Renormalization offers a promise of improving

the performance of any model that would normally use

batchnorm. This includes Residual Networks [5]. An-

other application is Generative Adversarial Networks [9],

where the non-determinism introduced by batchnorm has

been found to be an issue, and Batch Renorm may provide

a solution.

Finally, Batch Renormalization may benefit applica-

tions where applying batch normalization has been dif-

ficult – such as recurrent networks. There, batchnorm

would require each timestep to be normalized indepen-

dently, but Batch Renormalization may make it possible to

use the same running averages to normalize all timesteps,

and then update those averages using all timesteps. This

remains one of the areas that warrants further exploration.

References

[1] D. Arpit, Y. Zhou, B. U. Kota, and V. Govindaraju. Nor-

malization propagation: A parametric technique for re-

moving internal covariate shift in deep networks. arXiv

preprint arXiv:1603.01431, 2016.

[2] J. L. Ba, J. R. Kiros, and G. E. Hinton. Layer normaliza-

tion. arXiv preprint arXiv:1607.06450, 2016.

[3] J. Chen, R. Monga, S. Bengio, and R. Jozefowicz. Re-

visiting distributed synchronous sgd. arXiv preprint

arXiv:1604.00981, 2016.

[4] J. Goldberger, S. Roweis, G. Hinton, and R. Salakhutdi-

nov. Neighbourhood components analysis. In Advances in

Neural Information Processing Systems 17, 2004.

[5] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-

ing for image recognition. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 770–778, 2016.

[6] S. Ioffe and C. Szegedy. Batch normalization: Acceler-

ating deep network training by reducing internal covariate

shift. In Proceedings of the 32nd International Conference

on Machine Learning (ICML-15), pages 448–456, 2015.

[7] V. Nair and G. E. Hinton. Rectified linear units improve

restricted boltzmann machines. In ICML, pages 807–814.

Omnipress, 2010.

[8] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,

S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,

A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual

Recognition Challenge, 2014.

[9] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung,

A. Radford, and X. Chen. Improved techniques for train-

ing gans. In Advances in Neural Information Processing

Systems, pages 2226–2234, 2016.

[10] T. Salimans and D. P. Kingma. Weight normalization: A

simple reparameterization to accelerate training of deep

neural networks. In Advances in Neural Information Pro-

cessing Systems, pages 901–901, 2016.

[11] F. Schroff, D. Kalenichenko, and J. Philbin. Facenet:

A unified embedding for face recognition and clustering.

CoRR, abs/1503.03832, 2015.

[12] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wo-

jna. Rethinking the inception architecture for computer vi-

sion. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 2818–2826, 2016.

[13] T. Tieleman and G. Hinton. Lecture 6.5 - rmsprop.

COURSERA: Neural Networks for Machine Learning,

2012.

6


	1 Introduction
	2 Prior Work: Batch Normalization
	3 Batch Renormalization
	4 Results
	4.1 Baseline
	4.2 Small minibatches
	4.3 Non-i.i.d. minibatches

	5 Conclusions

