Skip to main contentSkip to navigationSkip to navigation
University of Warwick
A team at University of Warwick led the research. Photograph: Paul Cooper
A team at University of Warwick led the research. Photograph: Paul Cooper

New test can detect autism in children, scientists say

This article is more than 6 years old

Blood and urine test, believed to be first of its kind, could lead to earlier diagnosis of autism spectrum disorders

Scientists in Britain say they have developed a blood and urine test that can detect autism in children.

Researchers at the University of Warwick said the test, believed to be the first of its kind, could lead to earlier diagnosis of autism spectrum disorders (ASD) in children who could then be given appropriate treatment much earlier in their lives.

ASDs mainly affect a person’s social interaction and communication, with symptoms that can include speech disturbances, repetitive and/or compulsive behaviour, hyperactivity, anxiety, and difficulty adapting to new environments.

As there is a wide range of ASD symptoms, diagnosis can be difficult and uncertain, particularly at the early stages of development. It is estimated that about one in every 100 people in the UK has ASD, with more boys diagnosed with the condition than girls.

Scientists said their research found a link between ASD and damage to proteins in blood plasma. They found the most reliable of the tests they developed was examining protein in blood plasma, which found children with ASD had higher levels of the oxidation marker dityrosine (DT) and certain sugar-modified compounds called advanced glycation end-products (AGEs).

Genetic causes are thought to be responsible for about a third of cases of ASD, while the rest are believed to be caused by a combination of environmental factors, mutations, and rare genetic variants. However, researchers believe their new tests could reveal yet-to-be-identified causes of ASD.

They also confirmed the previously held belief that mutations of amino acid transporters are a genetic variant associated with ASD.

The Warwick team worked with collaborators at the University of Bologna in Italy, who recruited 38 children who had been diagnosed with ASD along with a control group of 31 other children between the ages of five and 12. Blood and urine samples were taken from the children for analysis.

The Warwick team discovered there were chemical differences between the two groups. Working with a further collaborator at the University of Birmingham, the changes in multiple compounds were combined using artificial intelligence algorithm techniques to develop a mathematical equation to distinguish between ASD and healthy controls. The outcome was a diagnostic test better than any existing method.

They said the next steps were to repeat the study with further groups of children to confirm the good diagnostic performance and to assess if the test could identify ASD at very early stages, indicate how the ASD is likely to develop further to more severe disease, and assess if treatments were working.

The research was led by Naila Rabbani, reader of experimental systems biology at the University of Warwick, who said: “Our discovery could lead to earlier diagnosis and intervention. We hope the tests will also reveal new causative factors.

“With further testing we may reveal specific plasma and urinary profiles – or ‘fingerprints’ – of compounds with damaging modifications. This may help us improve the diagnosis of ASD and point the way to new causes of ASD.”

The research has been published in the journal Molecular Autism.

Note added 27 February 2018: The UK autism research charity, Autistica, provided the following comment to the Guardian: “This is a small, early-stage study which may explain one biological difference in autism. At this stage, the results presented are not strong enough to suggest that this method could be used for the diagnosis of autism. For example, we don’t know whether this technique can distinguish autism from ADHD, anxiety or other similar conditions. There have been many previous attempts to develop a biological test for autism. Still, the best way to diagnose autism is through clinical interview and observation, which takes into account the many features of autism.”

More on this story

More on this story

  • France unveils €340m plan to improve rights of people with autism

  • 'France is 50 years behind': the 'state scandal' of French autism treatment

  • Study offers potential breakthrough in care of children with autism

  • Schoolgirls with autism share experiences in young adult novel

  • Our new network helps adult siblings of disabled brothers and sisters

  • How I connected with my autistic son through video games

  • Teacher’s letter praises boy with autism for qualities not tested in Sats

  • Autistic employees can give companies an edge in innovative thinking

  • You think autistic people have no empathy? My little boy is so empathetic it hurts

Most viewed

Most viewed