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Abstract. Some currently popular and successful deep learning archi-
tectures display certain pathological behaviors (e.g. confidently classi-
fying random data as belonging to a familiar category of nonrandom
images; and misclassifying miniscule perturbations of correctly classified
images). It is hypothesized that these behaviors are tied with limitations
in the internal representations learned by these architectures, and that
these same limitations would inhibit integration of these architectures
into heterogeneous multi-component AGI architectures. It is suggested
that these issues can be worked around by developing deep learning ar-
chitectures that internally form states homologous to image-grammar
decompositions of observed entities and events.

1 Introduction

In recent years ”deep learning” architectures — specifically, systems that roughly
emulate the visual or auditory cortex, with a goal of carrying out image or video
or sound processing tasks — have been getting a lot of attention both in the
scientific community and the popular media. The attention this work has re-
ceived has largely been justified, due to the dramatic practical successes of some
of the research involved. In image classification, in particular (the problem of
identifying what kind of object is shown in a picture, or which person’s face is
shown in a picture), deep learning methods have been very successful, coming
reasonably close to human performance in various contexts. Current deep learn-
ing systems can be trained by either supervised or unsupervised methods, but
it’s the supervised-learning approaches that have been getting the great results
and headlines. Two good summaries of the state of the art are Juergen Schmid-
huber’s recent review with 888 references [12], and the in-process textbook by
Yoshua Bengio and his colleagues [1].

The precise definition of “deep learning” is not very clear, and the term
seems to get wider and wider as it gets more popular. Broadly, I think it works to
consider a deep learning system as a learning system consisting of adaptive units
on multiple layers, where the higher level units recognize patterns in the outputs
of the lower level units, and also exert some control over these lower-level units.
A variety of deep learning architectures exist, including multiple sorts of neural
nets (that try to emulate the brain at various levels of precision), probabilistic



algorithms like Deep Boltzmann machines, and many others. This kind of work
has been going on since the middle of the last century. But only recently, due
to the presence of large amounts of relatively inexpensive computing power and
large amounts of freely available data for training learning algorithms, have such
algorithms really begun to bear amazing practical fruit.

A paper by Stanford and Google researchers [13], which reported work using
a deep learning neural network to recognize patterns in YouTube videos, received
remarkable press attention in 2012. One of the researchers was Andrew Ng, who
in 2014 was hired by Baidu to lead up their deep learning team. This work
yielded some fascinating examples most famously, it recognized a visual pattern
that looked remarkably like a cat. This is striking because of the well-known
prevalence of funny cat videos on Youtube. The software’s overall accuracy at
recognizing patterns in videos was not particularly high, but the preliminary
results showed exciting potential.

Another dramatic success was when Facebook, in mid-2014, reported that
they had used a deep learning system to identify faces in pictures with over 97%
accuracy [15] — essentially as high as human beings can do. The core of their
system was a Convolutional Neural Network (CNN), a pretty straightforward
textbook algorithm that bears only very loose conceptual resemblance to any-
thing “neural”. Rather than making algorithmic innovations, the main step the
Facebook engineers took was to implement their CNN on massive scale and with
massive training data. A Chinese team has since achieved even higher accura-
cies than Facebook on standard face recognition benchmarks, though they also
point out that their algorithm misses some cases that most humans would get
correctly [16].

Deep learning approaches to audition have also been very successful recently.
For a long time the most effective approach to speech-to-text was a relatively
simple technique known as “Hidden Markov Models” or HMMs. HMMs appear
to underlie the technology of Nuance, the 800-pound gorilla of speech-to-text
companies. But in 2013 Microsoft Research published a paper indicating their
deep learning speech-to-text system could outperform HMMs [2]. In December
2014 Andrew Ng’s group at Baidu announced a breakthrough in speech pro-
cessing — a system called Deep Speech, which reportedly gives drastically fewer
errors than previous systems in use by Apple, Google and others [7].

With all these exciting results, it’s understandable that many commentators
and even some researchers have begun to think that current deep learning archi-
tectures may be the key to advanced and even human-level AGI. However, my
main goal in this article is to argue, conceptually, why this probably isn’t the
case. I will raise two objections to the hypothesis:

1. Current deep learning architectures (even vaguely) mirror the structure and
information-processing dynamics of — at best — only parts of the human
brain, not the whole human brain

2. Some (and I conjecture nearly all) current deep learning architectures display
certain pathological behaviors (e.g. confidently classifying random data as
belonging to a familiar category of nonrandom images; and misclassifying



miniscule perturbations of correctly classified images), which seem to be
traceable to the nature of their internal knowledge representation. In this
sense they seem not to robustly mirror the information-processing dynamics
of the parts of the brain they resemble most, the visual and auditory cortex

My core thesis here is that these two objections are interconnected. I hypoth-
esize that the pathological behaviors are rooted in shortcomings in the inter-
nal (learned) representations of popular deep learning architectures, and these
shortcomings also make it difficult to connect these architectures with other Al
components to form integrated systems better resembling the architecturally
heterogeneous, integrative nature of the human brain.

I will also give some suggestions as to possible remedies for these problems.

2 Broad and Narrow Interpretations of ”Deep Learning”

In his book“Deep Learning” [11], cognitive scientist Stellan Ohlson formulates
the concept of deep learning as a general set of information-processing principles.
He also makes clear that these principles could be implemented in many different
kinds of systems, including neural networks but also including logic systems or
production rule systems or many other possibilities:

— Spontaneous activity : The cognitive system is constantly doing things,
always processing inputs if they are there, and always reprocessing various
of its representation of its inputs

— Structured, unbounded representations: Representations are generally
built out of other representations, giving a hierarchy of representations. The
lowest level representations are not fixed but are ongoingly reshaped based
on experience

— Layered, feedforward processing: Representations are created via layers
of processing units, with information passing from lower layers up to higher
layers

— Selective, capacity-limited processing: Processing units on each layer
pass information upward selectively each one generally passes up less infor-
mation than it takes in, and doesn’t pass it everywhere that it could

— Ubiquitous monotonic learning: Some of the representations the system
learns are stored in long term memory, others aren’t

— Local coherence and latent conflict: The various representations learned
by a system don’t have to be consistent with each other overall. Consistency
is worked toward locally when inconsistencies between elements are found;
there’s no requirement of global consistency.

— Feedback and point changes: Higher level processing units feed informa-
tion down to lower level units, thus potentially affecting their dynamics

— Amplified propagation of point changes: A small change anywhere in
the processing hierarchy might cause a large change elsewhere in the system
— as typical of complex and “chaotic” dynamical systems



— Interpretation and manifest conflict: Conflict between representations
may go unnoticed until a particular input comes in, which then reveals that
two previously learned representations can be in conflict

— Competitive evaluation and cognitive utility: Conflict between repre-
sentations are resolved broadly via “reinforcement learning”, i.e. based on
which representation proves most useful to the overall system in which con-
text

In the context of my own AI work with the OpenCog AGI architecture [5] [6], I
find it interesting to note that, of Ohlson’s principles of deep learning, only one
(“Representations are created via layers of processing units”) does not apply to
OpenCog’s AtomSpace knowledge store, a heterogeneously structured weighted,
labeled hypergraph. So to turn OpenCog into a deep learning system in Ohlson’s
sense, it would suffice to arrange some OpenCog Nodes into layers of processing
units. Then the various OpenCog learning dynamics including, e.g. Probabilistic
Logic Networks reasoning, which is very different in spirit from currently popular
deep learning architectures would become “deep learning” dynamics.

Of course, restricting the network architecture to be a hierarchy doesn’t ac-
tually make the learning or the network any more deep. A more freely structured
hypergraph like the general OpenCog Atomspace is just as deep as a deep learn-
ing network, and has just as much (or more) complex dynamics. The point of
hierarchical architectures for visual and auditory data processing is mainly that,
in these particular sensory data processing domains, one is dealing with infor-
mation that has a pretty strict hierarchical structure to it. It’s very natural to
decompose a picture into subregions, subsubregions and so forth; and to de-
fine an interval of time (in which e.g. sound or video occurs) into subintervals
of times. As we are dealing with space and time which have natural geomet-
ric structures, we can make a fixed processing-unit hierarchy that matches the
structure of space and time lower-down units in the hierarchy dealing with
smaller spatiotemporal regions; parent units dealing with regions that include
the regions dealt with by their children; etc. For this kind of spatiotemporal
data processing, a fairly rigid hierarchical structure makes a lot of sense (and
seems to be what the brain uses). For other kinds of data, like the semantics
of natural language or abstract philosophical thinking or even thinking about
emotions and social relationships, this kind of rigid hierarchical structure seems
much less useful, and in my view a more freely-structured architecture may be
more appropriate.

In the human brain, it seems the visual and auditory cortices have a very
strong hierarchical pattern of connectivity and information flow, whereas the
olfactory cortex has more of a wildly tangled-up, “combinatory” pattern. This
combinatory pattern of neural connectivity helps the olfactory cortex to recog-
nize smells using complex, chaotic dynamics, in which each smell represents an
“attractor state” of the oflactory cortex’s nonlinear dynamics (as neuroscientist
Walter Freeman has argued in a body of work spanning decades [9]). The por-
tions of the cortex dealing with abstract cognition have a mix of hierarchical
and combinatory connectivity patterns, probably reflecting the fact that they



do both hierarchy-focused pattern recognition as we see in vision and audition,
and attractor-based pattern recognition as we see in olfaction. But this is largely
speculation most likely, until we can make movies somehow of the neural dy-
namics corresponding to various kinds of cognition, we won’t really know how
these various structural and dynamical patterns come together to yield human
thinking.

My own view is that for anything resembling a standard 2015-style deep
learning system (say, a convolutional neural net, stacked autoencoder, etc.) to
achieve anything like human-level intelligence, major additions would have to be
made, involving various components that mix hierarchical and more heteroge-
neous network structures in various ways. For example: Take “episodic memory”
(your life story, and the events in it), as opposed to less complex types of memory.
The human brain is known to deal with the episodic memory quite differently
from the memory of images, facts, or actions. Nothing, in currently popular
architectures commonly labeled “deep learning”, tells you anything about how
episodic memory works. Some deep learning researchers (based on my personal
experience in numerous conversations with them!) would argue that the ability
to deal with episodic memories effectively will just emerge from their hierarchies,
if their systems are given enough perceptual experience. It’s hard to definitively
prove this is wrong, because these models are all complex dynamical systems,
which makes it difficult to precisely predict their behavior. Still, according to
the best current neuroscience knowledge [3], the brain doesn’t appear to work
this way; episodic memory has its own architecture, different in specifics from
the architectures of visual or auditory perception. I suspect that if one wanted
to build a primarily brain-like AGI system, one would need to design (not neces-
sarily strictly hierarchical) circuits for episodic memory, plus dozens to hundreds
of other specialized subsystems.

3 Pathologies of Contemporary Deep Learning
Architectures

Even if current deep learning architectures are limited in scope, they could still
be ideal solutions for certain aspects of the AGI problem, e.g. visual and auditory
data processing. In fact, though, they seem to be subject to certain pathologies
— and these pathologies seem (though have not been demonstrated) to be related
to properties that would make it difficult to integrate these architectures into
multi-component AGI architectures.

In a paper titled “Deep Neural Networks are Easily Fooled: High Confidence
Predictions for Unrecognizable Images” [10], one group of researchers showed
they could construct images that looked random to the human eye, but that
were classified by a CNN deep learning vision network as representing particular
kinds of objects, with high confidence. So, a picture that looks like random noise
to any person, might look exactly like a frog or a cup to the CNN. We may call
this the random images pathology.
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Fig. 1. From Examples of images that are unrecognizable to humans, but that state-
of-the-art deep neural networks trained on the standard ImageNet image collection
believe with =99.6% certainty to be a familiar object. From [10]

Another group, in a paper titled “Intriguing properties of neural networks”
[14], showed that by making a very small perturbation to a correctly classified
image, they could cause the deep network to misclassify the image. The pertur-
bations in question were so small that humans wouldn’t even notice. We may
call this the brittleness pathology.

Now, these two odd phenomena have no impact on practical performance
of convolutional neural networks. So one could view them as just being math-
ematical pathologies found by computer science geeks with too much time on
their hands. The first pathology is pragmatically irrelevant because a real-world
vision system is very unlikely to ever be shown weird random pictures that just
happen to trick it into thinking it’s looking at some object (most weird random
pictures won’t look like anything to it). The second one is pragmatically irrele-
vant because the variations of correctly classified pictures that will be strangely
misclassified, are very few in number. Most variations would be correctly clas-
sified. So these pathologies will not significantly affect classification accuracy
statistics. Further, these pathologies have only been demonstrated for CNNs — 1
suspect they are not unique to CNNs and would also occur for other currently
popular deep learning architectures like stacked autoencoders but this has not
been demonstrated.

But I think these pathologies are telling us something. They are telling us
that, fundamentally, these deep learning algorithms are not generalizing the
way that people do. They are not classifying images based on the same kinds
of patterns that people are. They are “overfitting” in a very subtle way not
overfitting to the datasets on which they’ve been trained, but rather overfitting to
the kind of problem they’ve been posed. In these examples, these deep networks
have been asked to learn models with high classification accuracy on image



Fig. 2. All images in the right column are incorrectly classified as ostriches by the CNN
in question. The images in the left column are correctly classified. The middle column
shows the difference between the left and right column. From [14]

databases and they have done so. They have not been asked to learn models
that capture patterns in images in a more generally useful way, that would be
helpful beyond the image classification task and so they have not done that.

When a human recognizes an image as containing a dog, it recognizes the
eyes, ears and nose and fur, for example. Because of this, if a human recognized
the image on the bottom left of the right image array in Figure 188 as a dog, it
would surely recognize the image on the bottom right of the right image array
as a dog as well. But a CNN is recognizing the bottom left image differently
than a human in a way that fundamentally generalizes differently, even if this
difference is essentially irrelevant for image classification accuracy.

I strongly suspect there is a theorem lurking here, stating in some way that
these kinds of conceptually pathological classification errors will occur if and
only if the classification model learning algorithm fails to recognize the com-
monly humanly recognizable high level features of the image (e.g. eyes, ears,
nose, fur in the dog example). Informally, what I suspect is: The reason these
pathologies occur is that these deep networks are not recognizing the “intuitively
right” patterns in the images. They are achieving accurate classification by find-
ing clever combinations of visual features that let them distinguish one kind of
picture from another but these clever combinations don’t include a humanly
meaningful decomposition of the image into component parts, which is the kind
of “hierarchical deep pattern recognition” a human’s brain does on looking at a
picture.

There are other kinds of Al computer vision algorithms that do a better job
of decomposing images into parts in an intuitive way. Stochastic image grammars
[17] are one good example. However, these algorithms are more complicated and
more difficult to implement scalably than CNNs and other currently popular
deep learning algorithms, and so they have not yet yielded equally high quality
image classification results. They are currently being developed only minimally,
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Fig. 3. lllustrative example of an image grammar for a simple object. Image grammar
based methods have been used for object classification as well, though not yet with
comparable accuracy to, say, CNNs or stacked autoencoders. From [10]

whereas CNNs and their ilk are being extremely heavily funded in the tech
industry.

Connecting these different threads of research I suggest that the pathological
results noted above would occur even on corpora generated by formal image
grammars:

Proposition 1. Suppose one generated a large corpus of images, falling into N
commonsensical categories, based on a moderately complex, but formally defined
image grammar. Then training current deep learning architectures on this corpus
would yield the brittleness and random images pathologies.

If true, this could be useful for studying the pathologies and how to eliminate
them, especially in conjunction with the proposition suggested below.

4 A Possible Way Out

How then could these pathologies be avoided, staying within the general deep
learning framework? And would avoiding these pathologies actually give any
practical benefit?

I believe, but have not rigorously shown, that there is a sensible and viable
way to bypass the random image and brittleness pathologies, not via any clever



tricks but via modifying deep learning algorithms to make them create more
sensible internal knowledge representations. Specifically, I suggest:

Proposition 2. For a deep learning hierarchy to avoid the brittleness and ran-
dom images pathologies (on a corpus generated from an image grammar, or on
a corpus of natural images), there would need to be a reasonably straightforward
mapping from recognizable activity patterns on the different layers, to elements
of a reasonably simple image grammar, so that via looking at the activity pat-
terns on each layer when the network was exposed to a certain image, one could
read out the “image grammar decomposition” of the elements of the image. For
instance, if one applied the deep learning network to a corpus images generated
from a commonsensical image grammar, then the deep learning system would
need to learn an internal state in reaction to an tmage, from which the image-
grammar decomposition of the image was easily decipherable.

As stated this is an intuitive rather than formal proposition. Approaches to
formalization will be interesting to explore.

If this hypothesis is conceptually correct, then one interesting research di-
rection might be to generate corpora using image grammars, and see what it
would take to get a deep learning algorithm to learn the image grammar from
the corpus, in the sense of emerging a structure in which the image grammar is
observable. Once this worked, the same algorithm could be applied to natural-
image corpora and the results analyzed.

My colleagues and I have pursued one approach to making a deep learning
network capable of learning an internal image grammar. In this approach, re-
ported in [4], the states of the DeSTIN deep learning algorithm are saved and
frequent patterns in the state-set are mined. A DeSTIN network state may then
be labeled with the frequent patterns from the learned pattern-library that are
instantiated in that state. These labels, in simple cases, appear function like an
image grammar. But it is not clear how general or robust this phenomenon is;
this requires further study.

Another question is whether difference target propagation, as proposed in [8],
might display the property suggested in Proposition 2. Difference target propa-
gation seeks to minimize reconstruction error at each level in a deep hierarchy
(as opposed to propagating error backwards from the top of a network as in
standard gradient descent methods). Whether, and under what circumstances,
this may cause formation of a meaningful image grammar inside a network’s
state, is a fascinating open question.
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