
Supplementary Materials
Scalable and accurate deep learning for electronic health records

Alvin Rajkomar*1,2, Eyal Oren*1, Kai Chen1, Andrew M. Dai1, Nissan Hajaj1,
Michaela Hardt1, Peter J. Liu1, Xiaobing Liu1, Jake Marcus1, Mimi Sun1, Patrik

Sundberg1, Hector Yee1, Kun Zhang 1, Yi Zhang1, Gerardo Flores1, Gavin E.
Duggan1, Jamie Irvine1, Quoc Le1, Kurt Litsch1, Alexander Mossin1, Justin

Tansuwan1, De Wang1, James Wexler1, Jimbo Wilson1, Dana Ludwig2, Samuel L.
Volchenboum4, Katherine Chou1, Michael Pearson1, Srinivasan Madabushi1, Nigam H.
Shah3, Atul J. Butte2, Michael Howell1, Claire Cui1, Greg Corrado1, and Jeff Dean1

1Google LLC, Mountain View, California
2University of California, San Francisco, San Francisco, California

3Stanford University, Stanford, California
4University of Chicago Medicine, Chicago, Illinois

March 15, 2018

Contents

1 Data Representation 1
1.1 Embeddings . 2

2 Description of Inclusion Criteria and Outcomes 3

3 Model Variants 5

4 Methods for All Techniques 9

5 Baseline Models 10

1 Data Representation
Data from each electronic health record was imported into a new schema based on the open-source
Fast Healthcare Interoperability Resources (FHIR) resource standards. We populated data into
elements from the following resources because they were available in both datasets: Patient, Encounter,
Medication, Observation (e.g. vital signs and nursing documentation), Composition (e.g. notes),
Conditions (i.e. diagnoses), MedicationAdministration, MedicationOrder, ProcedureRequest, and

1

Procedure. We imported the data directly from the health system, meaning we did not harmonize
elements to a standard terminology or ontology. If a health system included multiple terminologies,
like a site-specific coding scheme and an RxNorm code (a common medication coding scheme), we
imported both. The only exceptions were for diagnoses/procedures, which we mapped to ICD9/10
and CCS categories if the health system did not already include them (e.g. for CPT codes), and for
elements that were used to define the primary outcomes, as described in the main manuscript.

In the electronic health record datasets, there was a category of data referred to as “flowsheets,”
which correspond to many structured data elements in clinical care, like vital signs and nursing
documentation. Depending on workflows, data may be collected at the bedside, like a temperature
reading and then entered in the EHR later. This documentation provides (at least) two timestamps
– when the data was technically collected (recorded time) and when it was entered (entry time).
We specifically used the entry time in the EHR because especially during emergent situations,
the recorded times are estimated. We found that using the recorded-times significantly improved
prediction accuracy, but refrained from using them as the data is not actually available in the EHR
at that point-in-time.

FHIR is increasingly used to exchange healhcare data, and when available can be used as model
input directly as described in the manuscript. In this study however, data was originally collected
from vendor-specific database tables. The mapping from those tables to FHIR was manual, but
straightforward, because most tables and fields map directly to existing resource types and attributes
in FHIR, and because no data harmonization is required in our approach. To incorporate EHR data
that did not map straightforwardly to an existing FHIR resource type or attribute, FHIR extensions
can be defined.

1.1 Embeddings
In this section we explain the process of mapping FHIR resources to tokens, how individual tokens
were embedded, and how time was entered into the data-representation.

Each FHIR resource is composed of multiple elements, which we refer to as features. For example,
a FHIR resource corresponding to a medication order would have an element (feature) corresponding
to the name of the medication ordered and another element corresponding to the RxNorm code
of the medication. The value of each feature (e.g. “Aspirin”) was assigned either a single unique
token (for singular elements) or sequence of tokens (for free-text elements). Notes and other text
features (text descriptions of codes or names of medications, laboratory tests, and procedures) were
first tokenized (split on whitespace and punctuations etc.) and then mapped to a sequence of tokens.

Numeric values were represented differently in the model architectures. In general, two ways were
used: the first was to concatenate the name, value, and unit (e.g. “Hemoglobin 12 g/dL”) and assign
this to a unique token. A second approach was to concatenate the quantile of the value (calculated
specifically to the type of data-element: for example, 12 might be the median for hemoglobin but
99-th percentile for hemoglobin-a1c) to the unit and assign this to a unique token.

The unique tokens of a feature (e.g. medication codes or words in a note or observation percentiles)
were then individually mapped to a d-dimensional floating-point embedding vector ~e with d either
tuned as a hyperparameter or derived from the number of unique tokens. As long as a token occurred
at least twice in the training data-set it would receive its own embedding vector (for observation code
and value pairs, the token had to appear at least 100 times). Less frequent tokens were hashed and
mapped to a small number of out-of-vocabulary embedding vectors. All embeddings are randomly
initialized.

2

Supplemental Figure 1 illustrates part of the preceding discussion.
How the time associated with each resource was mapped to tokens differed for the model

architectures, however they all rely on the difference to the time of prediction in seconds, referred to
as delta-time. The recurrent neural network value took the logarithm of this delta-time rounded to
the next integer and capped at a maximum. The feed-forward network bucketized the delta-time
into exponentially increasing buckets of 1, 2, 4, 8, . . . days. The age in years of the patient was also
similarly bucketized, embedded and concatenated to the output of the final layer. The boosting
model learned thresholds of the delta-time as a way to discretize it.

2 Description of Inclusion Criteria and Outcomes

Inclusion Criteria
Inpatient encounters were defined as followed: 1. Encounter was confirmed as complete or non-
cancelled 2. Encounter had a start and end time 3. Encounter class was defined as inpatient as defined
in dataset 4. Administrative encounters were excluded (e.g. no primary diagnosis was documented);
these encounters accounted for less than 1 percent of hospitalizations in the data received.

The following services were included in the Medical-Surgical Cohort: General Medicine, Cardi-
ology, Neurology, Critical Care Medicine, Hematology, Oncology, Hepatobiliary Medicine, Medical
Specialties, General Surgery, Colorectal Surgery, Otolaryngology, Gynecology, Gynecology-Oncology,
Neurosurgery, Oral-Maxillofacial surgery, Orthopedics, Plastic Surgery, Thoracic Surgery, Transplant
Surgery, Urology, and Vascular Surgery.

Cohort Definitions
We made the following modifications of the CMS cohort definitions1 to ensure that every primary
diagnosis was listed in a cohort.

We added CCS code 150 (alcoholic liver disease) to the Medicine Cohort.
We created the following new Cohorts: Obstetric Cohort containing CCS codes 176-196. Rehabil-

itation Cohort containing CCS code 254 Injury and Poisoning Cohort containing CCS codes 260 and
2601-2621.

Determining Unplanned Readmission
We implemented the logic used by CMS to define planned readmissions1. The logic evaluates whether
admissions were for reasons that are defined to be planned (e.g. bone marrow transplants and
chemotherapy), and it distinguishes between surgical procedures that were accompanied by an acute
condition (e.g. acute cholecystitis) or non-acute condition, which were defined to be unplanned or
planned, respectively.

In the 2016 version of the CMS rules, some criteria were defined by a mix of CCS and ICD-9
procedure and diagnosis codes. Given that some hospitalizations only had ICD-10 diagnoses and
procedure codes, we mapped the ICD-9 CMS codes to ICD-10 and then applied the rules. We used
the mapping tables provided by the National Bureau of Economic Research2.

Fewer than 1 percent of hospitalizations did not have a primary diagnosis marked in the raw data.
Based on a review of a random sample of these hospitalizations, these encounters lacked clinical data
about events in the hospitalization and were therefore not included but they did have administrative

3

Figure 1: Conversion of FHIR resources to embeddings. The patient timeline contains a tempo-
rally ordered sequence of FHIR resources, visually depicted as flags, and details for the resources
corresponding to a medication order (in red) and procedure order (in blue) are depicted below the
timeline. Each resource is composed of features, like a medication order.code.text or procedure.coding.
Features are mapped to token IDs that are specific to a feature type (depicted in the figure as
having a feature type ID). For coding systems, the coding system is concatenated with the code
(e.g. “Hospital A. Ingredient Code 203134”) before being given a token ID. Note that in the feature
of procedure.code.text, the phrase “Ventilator Management” is separated into two separate tokens,
one for each word. Each token ID is associated with an embedding and weight (in the recurrent
neural network [RNN]). The embeddings and weights are randomly initialized and updated through
the training procedure. For the RNN, if two tokens exist for the same feature in a resource (e.g.
5-137 and 5-139), the corresponding embeddings are averaged with weights, as described in the
Supplement text. Note that the time-stamp is used in relation to the prediction time to calculate the
delta-time, which is subsequently dealt with differently by each model architecture. For the RNN,
the embeddings for all features at a given time-stamp are concatenated.

4

data that indicated that these were unplanned admissions. After confirming with the respective
partner sites, we treated these cases as ineligible to be index discharges given missing data but were
considered unplanned admissions. They were excluded from the mortality and diagnosis prediction
tasks.

Discharge Diagnoses
The discharge diagnoses include the primary and secondary diagnoses for the entire hospitalization,
including conditions diagnosed (and documented) about during the hospital stay. However, the codes
are often physically entered at the end or even after the end of a hospitalization (sometimes by a
professional biller), so we timed all the diagnoses of occurring the moment just after discharge. To
ensure no leak of information, we timed the occurrence of billing codes of a hospitalization to occur
immediately after a discharge; therefore, the prediction of diagnoses at discharge time does not have
access to these codes.

3 Model Variants

Weighted Recurrent neural network model (RNN)
In the RNN model, sparse features of each category (such as medication or procedures) were embedded
into the same d-dimensional embedding. d for each category was chosen based on the number of
possible features for that category according to the heuristic 6αd 4

√
V where αd is a hyperparameter

and V is the vocabulary size. The embeddings from different categories are concatenated together. We
then combine the embeddings in a novel way: for the same category and same time, the embeddings
are averaged according to an automatically learned weighting.

The sequence of embeddings were further reduced down to a shorter sequence. Typically, the
shorter sequences were split into time-steps of 12 hours where the embeddings for all features within
a category in the same day were combined using weighted averaging. The weighted averaging is done
by associating each feature with a non-negative weight that is trained jointly with the model. These
weights are also used for prediction attribution. The log of the average time-delta divided by a factor
(controlled by a hyperparameter) at each time-step is also embedded into a small floating-point vector
(which is also randomly initialized) and concatenated to the input embedding at each time-step.

This reduced sequence of embeddings were then fed to an n-layer Recurrent Neural Network
(RNN), specifically a Long Short-Term Memory network (LSTM)3. An RNN consists of a sequence
of directed nodes. Embeddings are fed to the RNN one at a time and for each time-step, each node
computes its activation as a nonlinear function of the input embedding. Each subsequent node
receives as input the previous node’s activation and the embedding for that time-step. The LSTM
extends the RNN by adding 3 gates, an input gate, output gate, forget gate to determine what
information to pass on to the next node relative to the previous node’s activation and the current
time-step’s embedding. Each node in the LSTM computes an hidden state vector and cell state
vector.

The LSTM is defined by the following set of equations where W and U corresponds to weight
matrices, b to biases and the subscript and variable f , i, o represent the forget, input and output
gates. ht represents the hidden output at time t, xt represents the input at time t and ct represents

5

the cell state at time t. σg represents the sigmoid function and σc the hyperbolic tangent.

ft = σg(Wfxt + Ufht−1 + bf)
it = σg(Wixt + Uiht−1 + bi)
ot = σg(Woxt + Uoht−1 + bo)
ct = ft · ct−1 + it · σc(Wcxt + Ucht−1 + bc)
ht = ot · σc(ct)

(1)

The hidden state of the final time-step of the LSTM was fed into an output layer, and the model
was optimized to minimize the log-loss (either a logistic regression or softmax loss depending on the
task). We applied a number of regularization techniques to the model, namely embedding dropout,
zoneout4, LSTM hidden dropout and variational RNN dropout5. We also used a small level of L2
weight decay, which adds a penalty for large weights into the loss. We trained with a batch size
of 128. Finally, we optimized everything jointly with Adagrad6 for the binary tasks and Adam7

for the multilabel tasks. For the multilabel tasks we also multiply the input to the LSTM at the
final-timestep with a special EOS embedding. We trained using the TensorFlow framework on the
Tesla P100 GPU. The hyperparameters were found via a Gaussian-process based hyperparameter
search on each dataset’s validation performance.

The hyperparameters used for the model for Hospital B are listed below. pk denotes keep
probability:

Hyperparameter Mortality/Readmission Discharge diagnoses
Embedding size multiplier αd 0.5736 1.0
Dense embedding size 100 200
Gradient clipping 11.16 0.1245
Embedding dropout pk 0.4410 0.7542
Hidden dropout pk 0.4740 0.8641
L2 penalty 0.000001566 0.0
Learning rate 0.4375 0.003688
LSTM hidden size 279 518
Variational input pk 0.9768 0.9290
Variational output pk 0.9747 0.8780
Variational recurrent pk 0.9976 0.9958
Variational vocabulary pk 0.5017 0.7266
Zoneout pk 0.9489 0.5628
Deltatime embedding size 20 30
Deltatime factor 0.41 1.0

Feedforward Model with Time-Aware Attention
To the sequence of embedding, Ei, i = 1, . . . , n we added an additional prior embedding to the
sequence E0 with the associated ∆0 = 0. For every embedding Ei, i = 0, . . . , n we created an
attribution logit αi using the process described below. Those logits were converted to weights βi
using softmax,

6

βi = eαi∑n
j=0 e

αj
(2)

We then took the d dimensional vector of the weighted sum, E =
∑
j βjEj , along with the scalars

log(n + 1) and log(
∑
j β

2
j), and entered them into a feedforward neural network whose attributes

(e.g. number and dimensions of the layers) were determined by hyperparameter tuning.
For the attribution logits, we used a bank of k functions, A1(∆), . . . , Ak(∆), where each Aj had

one of the following forms (typically not all forms in the same model):

• A(∆) = 1 (constant);

• A(∆) = ∆;

• A(∆) = log(∆ + 1day);

• A(∆) = Piece-wise linear function with predetermined inflection points (based on exponential
backoff) and learned slopes.

We defined a k dimensional projection of the embedding by learning a k × d dimensional matrix
P , and for every i = 0, 1, . . . , n multiplying it with Ei to get the k scalars p1,i, . . . , pk,i. We then
defined the attribution logits to be

αi =
k∑
j=1

pj,iAj(∆i) (3)

The embedding dimension, d, ranged from 16 to 512. The number of layers of the feedforward
network ranged from 0-3 with the width of the networks from 10 to 512.

Boosted, embedded time-series model
For the boosting model, bigrams, trigrams and 4-gram tokens were created from all tokenized features.
For each feature tuple of the token name, value, and time-delta, we algorithmically created (described
below) a set of binary decision rules that partitioned examples into two classes.

There were ten types of decision rules.

• The first was whether a variable, X, existed at any-point in a patient’s timeline.

• The second was whether a variable X existed more than C times in a patient’s timeline. C
was randomly picked from the range of integer values possible for each variable in the dataset.

• The third introduced the time sequence nature of the variable: was variable X greater or lower
than threshold V at any time t < T (i.e. x > V and t < T ; or x ≤ V and t < T). Again, V
and T were picked from the space of possible values in the dataset.
The fourth was a modification of the third rule, but rather than a simple binary cutoff, it
was a weighted sum of of the number of times that rule (x < V) was satisfied, with the
weights determined by a Hawkes process response with a time decay factor of T . A binary
rule was created by examining if this weighted sum was greater than the activation A, that is
Ainstance > Atemplate, where Atemplate is selected from a random user. Again, we use random

7

selection of a particular template instance to select V and T . Then A is computed from the
instance by

A =
∑
i

I{xi > V }e
−ti

T (4)

• The fifth, six, and seventh rules were created by determining if the minimum, maximum, and
average of variable X was greater than V in time t < T .

• The eighth and ninth type of rule captured changes in lab values over time (e.g. the decrease
in blood pressure over time). In particular, the eighth predicate checked the velocity, that is
if there is a change in a variable divided by a time window that is greater or lower than a
threshold V . The ninth predicate checked if the difference in values within time T is greater or
lower than a threshold V .

• The tenth type of rule consists of conjunctions of previous predicates (e.g. does X1 exist
and does the count of X2 exceed C2),We call these decision list predicates as, to preserve
interpretability, they only encompass the true branches of a decision tree. The conjunctions are
mined by picking the best predicate in a random selection of predicates, then, conditioned on
the best predicate, the a second one that also maximizes the weighted information gain with
respect to the label.

The actual instances of each rules, including the selection of variables, value thresholds and
time-thresholds were generated by first picking a random patient, random variable X, and a random
time T in the patient’s timeline. V is the corresponding value of X at time T and C is the counts of
times X occurs in the patient’s timeline.

Every binary rule, which we refer to as a binary predicate, was assigned a scalar weight, and the
weighted sum was passed through a softmax layer to create a prediction. To train, we first created a
bias binary predicate which was true for all examples and its weight was assigned as the log-odds
ratio of the positive label class across the dataset.

Next, we used rounds of boosting to select predicates. In each round, we picked 25,000 random
predicates from random patients in a batch of 500 patients. Importance-weighted information gain
with respect to the label was calculated for each and the top 50 predicates were picked. Additionally,
for each of those top 50 predicates, 50 more secondary predicates were selected using the same
information gain criteria, conditional on the primary predicate holding true. The best predicate and
second corresponding predicates were then joined together to create 50 more conjunction predicates
for a total of 100 predicates per round. Weights of these predicates were fitted using logistic regression
with L1 regularization. We then applied the model to all examples in the training dataset to create
prediction probabilities Q. Each example was then given an importance weight of |Label −Q|.

In the next round, we selected 25,000 new random predicates by sampling examples according to
the importance weight. The top 50 by information gain (and 50 more secondary ones) were added
to a new logistic model which included the predicates from the previously determined predicates.
The weights of all predicates were re-calculated (i.e. not just the new predicates), which is known as
totally corrective boosting.

We used 100 rounds, so in total 100,000 predicates were selected from a pool of 5,000,000 which
were in turn randomly selected from a pool of all possible predicates, which was equal to the product
of the number of patients, features, discrete values and time steps. The L1 regularization was then
used, which could further cull away the 100,000 selected predicates to a smaller set.

8

The final binary predicates were then embedded into a 1024 dimensional vector space and then
fed to a feed-forward network of depth 2 and 1024 hidden units per layer with ELU non-linearity. For
regularization, Gaussian noise of mean 0 and standard deviation 0.8 was added to the input of the
feed forward network. We also used multiplicative Bernoulli noise of p=0.01 (also known as dropout)
at the input and output (just before the applying the sigmoid function to the logits) of the feed
forward layer. At test time, no Gaussian or Bernoulli noise was used. We optimized everything with
Adam. The union of predicates optimized for different tasks (e.g. readmission or different diagnosis
codes), were all used together in the final model. These final binary predicates have been mined from
different tasks (e.g. for the readmission task, many diagnosis code models might contribute auxiliary
binary predicates that they have mined as features for the feedforward network).

4 Methods for All Techniques

Attribution Mechanisms
To explain predictions we implement attribution mechanisms. Inspired by recent results in natural
language processing8, the feed-forward models implement an attention mechanism identifying the
locations in a sequence of variables which may have played a significant role in affecting the prediction.
Notably, the same variable could be harnessed differently given when it occurred in relationship to
other events for a given patient timeline. The RNN models implement a form of weighting that also
learns which variables are important for prediction relative to other variables. We use both of these
methods to perform attribution.

Illustrating the data that the models attended to is difficult because of the complexity of the
data, including thousands of time-steps with tens- to hundreds-of-thousands of tokens, representing a
large percentage of all the data that is viewable in a patient’s actual EHR record. Moreover, given
the correlation of the data (the heart-rate at time x is related to the rate at x+ 1) and redundancy
(the medication order of “norepinpherine” is redundant with the nurse’s documentation of the rate to
which it is titrated), the models could choose to attend to equivalent data arbitrarily. For visualization
purposes only, we re-trained feed-forward models on a single task, mortality, with models using only
a single data-type (e.g. notes, medications, observation data) to preclude the models using redundant
data among different feature types. These models differ in predictive performance than that of the
full models reported in Table 2.

In Figure 4 of the main manuscript, we render the timeline, populating a circle for every time-step
where at least a single token exists for that patient. We have shown snippets of select time-steps
and highlight the tokens in which the model using that data-type chose to attend it. For tokens
with significant attribution scores, we have “smeared” attribution to directly neighboring tokens for
visualization purposes. The model outputs attribution for all tokens and we selected the top tokens,
which for this particular example, corresponded to a threshold of 0.001, although further research is
needed to identify the optimal threshold. For patient privacy reasons, we have obscured information
about the dates and times of all tokens, although the relative time has been retained.

Automated Hyperparameter Tuning
There are many design choices to training neural networks that are beyond the scope of this
manuscript but are well described elsewhere9. The hyper-parameters, which are settings that affect

9

the performance of all above neural networks were tuned automatically using Google Vizier10 over
thousands of experiments.

Ensembling
For a given prediction task, we could use a variety of algorithms to make a prediction. For example,
we could use a sequence model, feed-forward model, and a boosting model, and their predictions
would be different on the same example. Ensembling combines the multiple predictions to make a
final prediction; this is similar to tallying votes for an election result. We combined the predictions
(probabilities) from the three models of the ensemble by averaging.

5 Baseline Models
The first set were constructed using traditional modeling techniques. We used recent literature
reviews to select commonly used variables for each task11–13. These hand-engineered features are
used only in the baseline models; the deep learning models do not use feature selection.

The second set of baseline models were created by using the full set of predictor variables in a
simple linear model, to assess the effect of simply including all the variables, which is a common
baseline in many machine learning papers. In this model we flattened the entire sequence, ignoring
temporal order, and only considered the existence of each predictor variable. For text features such
as clinical notes, we considered both the unigram and bigram of the text tokens. For observations
such as lab test results, we created two representations. First, for each feature we concatenated
the code, value and unit (when available) into a string (e.g. “code:12345 12.6 g/dl”). Second, we
concatenated the code, percentile-of-value and unit (e.g. “code:12345 0.75 g/dL,” if the raw value
12.6 was the 75-percentile for that observation code in the training set). The percentiles are rounded
into 20 buckets. Note that we did not harmonize the medical meaning of the observations, other than
giving the model their raw values and percentile buckets. For diagnosis, medication and procedures,
we considered all the available codes, such as medication RxNorm and ingredient. The patients’
demographic information such as age and gender were also considered. The baseline model is a
logistic regression model trained using the Adam optimizer with early-stopping as regularization,
since it gave us the best result. We tuned the model on the validation set. We refer to these models
as “full feature simple baselines.”

The third set of baseline models were very similar to the second set, except that we bucketized
the features into five time-buckets, i.e. less than 1 day, 1 week, 1 month or 1 year, or greater than
1 year. This was a simple way to let the model be aware of the time component (e.g. whether a
treatment has happened within a week, or more than a year ago). We refer to these models as “full
feature enhanced baselines”, similar to Razavian et al. [14].

We fitted the model on the training set separately for each hospital’s data and report results
when applying this model to the test set of each hospital’s data. Confidence intervals were obtained
using the same procedure outlined in the manuscript.

Mortality Baseline Model - aEWS
Most existing models use a small set of lab measurements, vital signs and mental status. Following
this approach, for the EHR datasets, we created a model that used the most recent systolic blood
pressure, heart-rate, respiratory rate and temperature in Fahrenheit (any temperature that was listed

10

below 90 degree Fahrenheit was converted from Celsius to Fahrenheit). Because urine output and
mental status was not coded consistently between sites, we instead used the most recent white blood
cell count, hemoglobin15, sodium16, creatinine17,18, troponin19–21 lactate oxygen saturation, oxygen
source, glucose, calcium, potassium, chloride, blood urea nitrogen (BUN), carbon dioxide, hematocrit,
platelet, magnesium, phosphorus, albumin, aspartate transaminase (AST), Alkaline Phosphatase,
Total Bilirubin, International Normalized Ratio, and Absolute Neutrophil Count (ANC). All values
were log transformed and standardized to have a mean of zero and standard deviation of 1 based on
values for each hospital’s data on the development set. We also added the hospital service and age.

Readmission Baseline Model - modified HOSPITAL score
We created a modified HOSPITAL score22 that included the most recent value of sodium and
hemoglobin log transformed and standardized (to mean 0 and standard deviation of 1) based on
values for each hospital’s data on the development set, binary indicators for hospital service, a binary
indicator for the occurrence of any CPT codes during the hospitalization, a binary indicator for the
hospitalization lasting at least 5 days, prior hospital admissions in the past year discretized to 0,1,
2-5 and >5, and admission source.

Length of Stay Baseline Model - modified Liu
We created a baseline model similar to those created using electronic health record data for general
hospital populations23. We created a lasso logistic model with the following variables: age, gender,
prior HCC codes in the timeline (counts for each one), the principal diagnosis coded as a CCS,
hospital service, and the most recent lab value of each possible lab used in the mortality baseline
model.

Results of full feature baselines
For the full feature simple baselines, for predicting inpatient mortality at 24 hours after admission,
the AUROC was 0.93 (95%CI 0.91-0.94) for Hospital A and 0.90 (95%CI 0.88-0.92) for Hospital B.
For predicting unexpected readmissions within 30-days the AUROCs at discharge were 0.74 (95%CI
0.73-0.76) for Hospital A and 0.73 (95%CI 0.72-0.74) for Hospital B. For long length-of-stay at 24
hours after admission, the AUROC was 0.83 (95%CI 0.82-0.84) for Hospital A and 0.81 (95%CI
0.80-0.82) for Hospital B.

For the full feature enhanced baselines, for predicting inpatient mortality at 24 hours after
admission, the AUROC was 0.93 (95%CI 0.92-0.95) for Hospital A and 0.91 (95%CI 0.89-0.92)
for Hospital B. For predicting unexpected readmissions within 30-days the AUROCs at discharge
were 0.75 (95%CI 0.73-0.76) for Hospital A and 0.75 (95%CI 0.74-0.76) for Hospital B. For long
length-of-stay at 24 hours after admission, the AUROC was 0.85 (95%CI 0.84-0.85) for Hospital A
and 0.83 (95%CI 0.83-0.84) for Hospital B.

The results of the full-feature simple baseline are in-between the limited-feature baseline and
the full-feature enhanced baseline. The results of the full-feature enhanced baseline are generally
in-between the full-feature simple baseline and our deep-learning models.

11

Supplemental Table 1: Prediction accuracy of each task of deep learning model compared to baselines

Hospital A Hospital B
Inpatient Mortality, AUROC1(95% CI)
Deep learning 24 hours after admission 0.95(0.94-0.96) 0.93(0.92-0.94)
Full feature enhanced baseline at 24 hours after admission 0.93 (0.92-0.95) 0.91 (0.89-0.92)
Full feature simple baseline at 24 hours after admission 0.93 (0.91-0.94) 0.90 (0.88-0.92)
Baseline (aEWS2) at 24 hours after admission 0.85 (0.81-0.89) 0.86 (0.83-0.88)
30-day Readmission, AUROC (95% CI)
Deep learning at discharge 0.77(0.75-0.78) 0.76(0.75-0.77)
Full feature enhanced baseline at discharge 0.75 (0.73-0.76) 0.75 (0.74-0.76)
Full feature simple baseline at discharge 0.74 (0.73-0.76) 0.73 (0.72-0.74)
Baseline (mHOSPITAL3) at discharge 0.70 (0.68-0.72) 0.68 (0.67-0.69)
Length of Stay at least 7 days AUROC (95% CI)
Deep learning 24 hours after admission 0.86(0.86-0.87) 0.85(0.85-0.86)
Full feature enhanced baseline at 24 hours after admission 0.85 (0.84-0.85) 0.83 (0.83-0.84)
Full feature simple baseline at 24 hours after admission 0.83 (0.82-0.84) 0.81 (0.80-0.82)
Baseline (mLiu4) at 24 hours after admission 0.76 (0.75-0.77) 0.74 (0.73-0.75)
1 Area under the receiver operator curve
2 Augmented early warning score
3 Modified HOSPITAL score
4 Modified Liu score

12

(a) Calibration curve for inpatient mortality
predicted at 24 hours into hospitalization
for hospital A

(b) Calibration curve for inpatient mortality
predicted at 24 hours into hospitalization
for hospital B

(c) Calibration curve for readmission pre-
dicted at discharge for hospital A

(d) Calibration curve for readmission pre-
dicted at discharge for hospital B

(e) Calibration curve for long length of stay
predicted at 24 hours into hospitalization
for hospital A

(f) Calibration curve for long length of stay
predicted at 24 hours into hospitalization
for hospital B

Supplemental Figure 2: Calibration curves for deep learning models

13

References
1. 2016 Measure updates and specifications report: hospital-wide all-cause unplanned readmission

— version 5.0. Yale–New Haven Health Services Corporation/Center for Outcomes Research &
Evaluation (May 2016).

2. CMS’ ICD-9-CM to and from ICD-10-CM and ICD-10-PCS Crosswalk or General Equivalence
Mappings http://www.nber.org/data/icd9-icd-10-cm-and-pcs-crosswalk-general-
equivalence-mapping.html. Accessed: 2017-7-21.

3. Hochreiter, S. & Schmidhuber, J. Long Short-Term Memory. Neural Comput. 9, 1735–1780
(Nov. 1997).

4. Krueger, D. et al. Zoneout: Regularizing rnns by randomly preserving hidden activations in
International Conference on Learning Representations (2017).

5. Gal, Y. & Ghahramani, Z. A theoretically grounded application of dropout in recurrent neural
networks in Advances in neural information processing systems (2016), 1019–1027.

6. Duchi, J., Hazan, E. & Singer, Y. Adaptive Subgradient Methods for Online Learning and
Stochastic Optimization. J. Mach. Learn. Res. 12, 2121–2159. issn: 1532-4435 (July 2011).

7. Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization in International Conference
on Learning Representations (2015).

8. Bahdanau, D., Cho, K. & Bengio, Y. Neural Machine Translation by Jointly Learning to Align
and Translate. arXiv: 1409.0473 (2014).

9. Goodfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016).
10. Golovin, D. et al. Google Vizier: A Service for Black-Box Optimization in Proceedings of the

23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (ACM,
2017).

11. Zhou, H., Della, P. R., Roberts, P., Goh, L. & Dhaliwal, S. S. Utility of models to predict
28-day or 30-day unplanned hospital readmissions: an updated systematic review. BMJ Open 6,
e011060 (2016).

12. Smith, M. E. B. et al. Early Warning System Scores for Clinical Deterioration in Hospitalized
Patients: A Systematic Review. Ann. Am. Thorac. Soc. 11, 1454–1465 (2014).

13. Lu, M., Sajobi, T., Lucyk, K., Lorenzetti, D. & Quan, H. Systematic review of risk adjustment
models of hospital length of stay (LOS). Med. Care 53, 355–365 (Apr. 2015).

14. Razavian, N. et al. Population-level prediction of type 2 diabetes from claims data and analysis
of risk factors. Big Data 3, 277–287 (2015).

15. Kalra, P. R. et al. Hemoglobin and Change in Hemoglobin Status Predict Mortality, Cardiovas-
cular Events, and Bleeding in Stable Coronary Artery Disease. Am. J. Med. (June 2017).

16. Biggins, S. W. et al. Serum sodium predicts mortality in patients listed for liver transplantation.
Hepatology 41, 32–39 (Jan. 2005).

17. Bucaloiu, I. D., Kirchner, H. L., Norfolk, E. R., Hartle 2nd, J. E. & Perkins, R. M. Increased
risk of death and de novo chronic kidney disease following reversible acute kidney injury. Kidney
Int. 81, 477–485 (Mar. 2012).

14

http://www.nber.org/data/icd9-icd-10-cm-and-pcs-crosswalk-general-equivalence-mapping.html
http://www.nber.org/data/icd9-icd-10-cm-and-pcs-crosswalk-general-equivalence-mapping.html
http://arxiv.org/abs/1409.0473

18. Lafrance, J.-P. & Miller, D. R. Acute kidney injury associates with increased long-term mortality.
J. Am. Soc. Nephrol. 21, 345–352 (Feb. 2010).

19. Waxman, D. A., Hecht, S., Schappert, J. & Husk, G. A model for troponin I as a quantitative
predictor of in-hospital mortality. J. Am. Coll. Cardiol. 48, 1755–1762 (2006).

20. Kim, L. J. et al. Cardiac troponin I predicts short-term mortality in vascular surgery patients.
Circulation 106, 2366–2371 (Oct. 2002).

21. James, P. et al. Relation between troponin T concentration and mortality in patients presenting
with an acute stroke: observational study. BMJ 320, 1502–1504 (June 2000).

22. Donzé, J., Aujesky, D., Williams, D. & Schnipper, J. L. Potentially avoidable 30-day hospital
readmissions in medical patients: derivation and validation of a prediction model. JAMA Intern.
Med. 173, 632–638 (Apr. 2013).

23. Liu, V., Kipnis, P., Gould, M. K. & Escobar, G. J. Length of stay predictions: improvements
through the use of automated laboratory and comorbidity variables. Med. Care 48, 739–744
(Aug. 2010).

15

	Data Representation
	Embeddings

	Description of Inclusion Criteria and Outcomes
	Model Variants
	Methods for All Techniques
	Baseline Models

