Skip to main content

Advertisement

Log in

Hair cortisol in the evaluation of Cushing syndrome

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

Hair cortisol evaluation has been used to help detect patients with suspected Cushing syndrome. Our goal was to correlate segmental hair cortisol with biochemical testing in patients with Cushing syndrome and controls. This study was a prospective analysis of hair cortisol in confirmed Cushing syndrome cases over 16 months.

Methods

Thirty-six subjects (26.5 ± 18.9 years, 75% female, and 75% Caucasian) were analyzed by diurnal serum cortisol, 24 h urinary free cortisol corrected for body surface area (UFC/BSA), and 24 h urinary 17-hydroxysteroids corrected for creatinine (17OHS/Cr). Thirty patients were diagnosed with Cushing syndrome, and six were defined as controls. 3-cm hair samples nearest to the scalp, cut into 1-cm segments (proximal, medial, and distal), were analyzed for cortisol by enzyme immunoassay and measured as pmol cortisol/g dry hair. Hair cortisol levels were compared with laboratory testing done within previous 2 months of the evaluation.

Results

Proximal hair cortisol was higher in Cushing syndrome patients (266.6 ± 738.4 pmol/g) than control patients (38.9 ± 25.3 pmol/g) (p = 0.003). Proximal hair cortisol was highest of all segments in 25/36 (69%) patients. Among all subjects, proximal hair cortisol was strongly correlated with UFC/BSA (r = 0.5, p = 0.005), midnight serum cortisol (r = 0.4, p = 0.03), and 17OHS/Cr, which trended towards significance (r = 0.3, p = 0.06).

Conclusions

Among the three examined hair segments, proximal hair contained the highest cortisol levels and correlated the most with the initial biochemical tests for Cushing syndrome in our study. Further studies are needed to validate proximal hair cortisol in the diagnostic workup for Cushing syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. L.K. Nieman, B.M. Biller, J.W. Findling, J. Newell-Price, M.O. Savage, P.M. Stewart, V.M. Montori, The diagnosis of cushing’s syndrome: an endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab. 93(5), 1526–1540 (2008). doi:10.1210/jc.2008-0125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. T.C. Friedman, D.E. Ghods, H.K. Shahinian, L. Zachery, N. Shayesteh, S. Seasholtz, E. Zuckerbraun, M.L. Lee, I.E. McCutcheon, High prevalence of normal tests assessing hypercortisolism in subjects with mild and episodic Cushing’s syndrome suggests that the paradigm for diagnosis and exclusion of cushing’s syndrome requires multiple testing. Horm. Metab. Res. 42(12), 874–881 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. S. Kidambi, H. Raff, J.W. Findling, Limitations of nocturnal salivary cortisol and urine free cortisol in the diagnosis of mild Cushing’s syndrome. Eur. J. Endocrinol. 157(6), 725–731 (2007). doi:10.1530/eje-07-0424

    Article  CAS  PubMed  Google Scholar 

  4. F. Pecori Giraldi, A.G. Ambrogio, M. De Martin, L.M. Fatti, M. Scacchi, F. Cavagnini, Specificity of first-line tests for the diagnosis of Cushing’s syndrome: assessment in a large series. J. Clin. Endocrinol. Metab. 92(11), 4123–4129 (2007). doi:10.1210/jc.2007-0596

    Article  PubMed  Google Scholar 

  5. D.A. Papanicolaou, J.A. Yanovski, G.B. Cutler Jr., G.P. Chrousos, L.K. Nieman, A single midnight serum cortisol measurement distinguishes Cushing’s syndrome from pseudo-Cushing states. J. Clin. Endocrinol. Metab. 83(4), 1163–1167 (1998). doi:10.1210/jcem.83.4.4733

    CAS  PubMed  Google Scholar 

  6. J. Newell-Price, P. Trainer, L. Perry, J. Wass, A. Grossman, M. Besser, A single sleeping midnight cortisol has 100% sensitivity for the diagnosis of Cushing’s syndrome. Clin. Endocrinol. (Oxf). 43(5), 545–550 (1995)

    Article  CAS  PubMed  Google Scholar 

  7. M.B. Elamin, M.H. Murad, R. Mullan, D. Erickson, K. Harris, S. Nadeem, R. Ennis, P.J. Erwin, V.M. Montori, Accuracy of diagnostic tests for Cushing’s syndrome: a systematic review and metaanalyses. J. Clin. Endocrinol. Metab. 93(5), 1553–1562 (2008)

    Article  CAS  PubMed  Google Scholar 

  8. M.M. Grumbach, B.M.K. Biller, G.D. Braunstein, K.K. Campbell, J.A. Carney, P.A. Godley, E.L. Harris, J.K.T. Lee, Y.C. Oertel, M.C. Posner, J.A. Schlechte, H.S. Wieand, Management of the clinically inapparent adrenal mass (“Incidentaloma”). Ann. Intern. Med. 138(5), 424–430 (2003). doi:10.7326/0003-4819-138-5-200303040-00013

    Article  PubMed  Google Scholar 

  9. J.R. Meinardi, B.H.R. Wolffenbuttel, R.P.F. Dullaart, Cyclic Cushing’s syndrome: a clinical challenge. Eur. J. Endocrinol. 157(3), 245–254 (2007)

    Article  CAS  PubMed  Google Scholar 

  10. S. Thomson, G. Koren, L.A. Fraser, M. Rieder, T.C. Friedman, S.H.M. Van Uum, Hair analysis provides a historical record of cortisol levels in Cushing’s syndrome. Exp. Clin. Endocrinol. Diabetes 118(2), 133–138 (2010). doi:10.1055/s-0029-1220771

    Article  CAS  PubMed  Google Scholar 

  11. L. Manenschijn, J.W. Koper, E.L.T. Van Den Akker, L.J.M. De Heide, E.A.M. Geerdink, F.H. De Jong, R.A. Feelders, E.F.C. Van Rossum, A novel tool in the diagnosis and follow-up of (cyclic) Cushing’s syndrome: measurement of long-term cortisol in scalp hair. J. Clin. Endocrinol. Metab. 97(10), E1836–E1843 (2012)

    Article  CAS  PubMed  Google Scholar 

  12. R. Gow, G. Koren, M. Rieder, S. Van Uum, Hair cortisol content in patients with adrenal insufficiency on hydrocortisone replacement therapy. Clin. Endocrinol. (Oxf.) 74(6), 687–693 (2011)

    Article  CAS  Google Scholar 

  13. S.M. Staufenbiel, C.D. Andela, L. Manenschijn, A.M. Pereira, E.F. van Rossum, N.R. Biermasz, Increased hair cortisol concentrations and BMI in patients with pituitary-adrenal disease on hydrocortisone replacement. J. Clin. Endocrinol. Metab. 100(6), 2456–2462 (2015). doi:10.1210/jc.2014-4328

    Article  CAS  PubMed  Google Scholar 

  14. L. Manenschijn, M. Quinkler, E.F.C. van Rossum, Hair cortisol measurement in mitotane-treated adrenocortical cancer patients. Horm. Metab. Res. 46(04), 299–304 (2014). doi:10.1055/s-0034-1370961

    Article  CAS  PubMed  Google Scholar 

  15. G. Noppe, E.F. van Rossum, J. Vliegenthart, J.W. Koper, E.L. van den Akker, Elevated hair cortisol concentrations in children with adrenal insufficiency on hydrocortisone replacement therapy. Clin. Endocrinol. (Oxf). 81(6), 820–825 (2014). doi:10.1111/cen.12551

    Article  CAS  PubMed  Google Scholar 

  16. B. Sauvé, G. Koren, G. Walsh, S. Tokmakejian, S.H.M. Van Uum, Measurement of cortisol in human hair as a biomarker of systemic exposure. Clin. Invest. Med. 30(5), E183–E191 (2007)

    PubMed  Google Scholar 

  17. K.L. D’Anna-Hernandez, R.G. Ross, C.L. Natvig, M.L. Laudenslager, Hair cortisol levels as a retrospective marker of hypothalamic-pituitary axis activity throughout pregnancy: comparison to salivary cortisol. Physiol. Behav. 104(2), 348–353 (2011). doi:10.1016/j.physbeh.2011.02.041

    Article  PubMed  PubMed Central  Google Scholar 

  18. B. Vanaelst, I. Huybrechts, K. Bammann, N. Michels, T. de Vriendt, K. Vyncke, I. Sioen, L. Iacoviello, K. Gunther, D. Molnar, L. Lissner, N. Rivet, J.S. Raul, S. de Henauw, Intercorrelations between serum, salivary, and hair cortisol and child-reported estimates of stress in elementary school girls. Psychophysiology 49(8), 1072–1081 (2012). doi:10.1111/j.1469-8986.2012.01396.x

    PubMed  Google Scholar 

  19. F.R. Faucz, M. Zilbermint, M.B. Lodish, E. Szarek, G. Trivellin, N. Sinaii, A. Berthon, R. Libe, G. Assie, S. Espiard, L. Drougat, B. Ragazzon, J. Bertherat, C.A. Stratakis, Macronodular adrenal hyperplasia due to mutations in an armadillo repeat containing 5 (ARMC5) Gene: a clinical and genetic investigation. J. Clin. Endocrinol. Metab. 99(6), E1113–E1119 (2014). doi:10.1210/jc.2013-4280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. D. DuBois, E.F. DuBois, A formula to estimate the approximate surface area if height and weight be known. Arch. Intern. Med. 17, 863–871 (1916)

    Article  CAS  Google Scholar 

  21. H.P. Hsiao, L.S. Kirschner, I. Bourdeau, M.F. Keil, S.A. Boikos, S. Verma, A.J. Robinson-White, M. Nesterova, A. Lacroix, C.A. Stratakis, Clinical and genetic heterogeneity, overlap with other tumor syndromes, and atypical glucocorticoid hormone secretion in adrenocorticotropin-independent macronodular adrenal hyperplasia compared with other adrenocortical tumors. J. Clin. Endocrinol. Metab. 94(8), 2930–2937 (2009). doi:10.1210/jc.2009-0516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. M.A. LeBeau, M.A. Montgomery, J.D. Brewer, The role of variations in growth rate and sample collection on interpreting results of segmental analyses of hair. Forensic Sci. Int. 210, 110–116 (2011)

    Article  PubMed  Google Scholar 

  23. J. Meyer, M. Novak, A. Hamel, K. Rosenberg, Extraction and analysis of cortisol from human and monkey hair. J. Vis. Exp. 83, e50882 (2013). doi:10.3791/50882

    Google Scholar 

  24. S.L. van Ockenburg, H.M. Schenk, A. van der Veen, E.F. van Rossum, I.P. Kema, J.G. Rosmalen, The relationship between 63days of 24-h urinary free cortisol and hair cortisol levels in 10 healthy individuals. Psychoneuroendocrinology 73, 142–147 (2016). doi:10.1016/j.psyneuen.2016.07.220

    Article  PubMed  Google Scholar 

  25. R.J. Myers, J.B. Hamilton, Regeneration and rate of growth of hairs in man. Ann. N. Y. Acad. Sci. 53(3), 562–568 (1951)

    Article  CAS  PubMed  Google Scholar 

  26. C. Kirschbaum, A. Tietze, N. Skoluda, L. Dettenborn, Hair as a retrospective calendar of cortisol production-increased cortisol incorporation into hair in the third trimester of pregnancy. Psychoneuroendocrinology 34(1), 32–37 (2009). doi:10.1016/j.psyneuen.2008.08.024

    Article  CAS  PubMed  Google Scholar 

  27. L. Manenschijn, J.W. Koper, S.W.J. Lamberts, E.F.C. Van Rossum, Evaluation of a method to measure long term cortisol levels. Steroids 76(10-11), 1032–1036 (2011)

    Article  CAS  PubMed  Google Scholar 

  28. A.F. Hamel, J.S. Meyer, E. Henchey, A.M. Dettmer, S.J. Suomi, M.A. Novak, Effects of shampoo and water washing on hair cortisol concentrations. Clin. Chim. Acta 412, 382–385 (2011). doi:10.1016/j.cca.2010.10.019

    Article  CAS  PubMed  Google Scholar 

  29. M.C. Hoffman, L.V. Karban, P. Benitez, A. Goodteacher, M.L. Laudenslager, Chemical processing and shampooing impact cortisol measured in human hair. Clin. Invest. Med. 37(4), E252–E257 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  30. V.L. Wester, N.R. van der Wulp, J.W. Koper, Y.B. de Rijke, E.F. van Rossum, Hair cortisol and cortisone are decreased by natural sunlight. Psychoneuroendocrinology 72, 94–96 (2016). doi:10.1016/j.psyneuen.2016.06.016

    Article  CAS  PubMed  Google Scholar 

  31. S.M. Staufenbiel, B.W. Penninx, Y.B. de Rijke, E.L. van den Akker, E.F. van Rossum, Determinants of hair cortisol and hair cortisone concentrations in adults. Psychoneuroendocrinology 60, 182–194 (2015). doi:10.1016/j.psyneuen.2015.06.011

    Article  CAS  PubMed  Google Scholar 

  32. J. Grass, C. Kirschbaum, R. Miller, W. Gao, S. Steudte-Schmiedgen, T. Stalder, Sweat-inducing physiological challenges do not result in acute changes in hair cortisol concentrations. Psychoneuroendocrinology 53, 108–116 (2015). doi:10.1016/j.psyneuen.2014.12.023

    Article  CAS  PubMed  Google Scholar 

  33. N. Ito, T. Ito, A. Kromminga, A. Bettermann, M. Takigawa, F. Kees, R.H. Straub, R. Paus, Human hair follicles display a functional equivalent of the hypothalamic-pituitary-adrenal axis and synthesize cortisol. FASEB J. 19(10), 1332–1334 (2005)

    CAS  PubMed  Google Scholar 

  34. A.T. Slominski, P.R. Manna, R.C. Tuckey, Cutaneous glucocorticosteroidogenesis: securing local homeostasis and the skin integrity. Exp. Dermatol. 23(6), 369–374 (2014). doi:10.1111/exd.12376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. A. Tiganescu, E.A. Walker, R.S. Hardy, A.E. Mayes, P.M. Stewart, Localization, age- and site-dependent expression, and regulation of 11beta-hydroxysteroid dehydrogenase type 1 in skin. J. Invest. Dermatol. 131(1), 30–36 (2011). doi:10.1038/jid.2010.257

    Article  CAS  PubMed  Google Scholar 

  36. A. Slominski, Neuroendocrine system of the skin. Dermatology 211(3), 199–208 (2005). doi:10.1159/000087012

    Article  PubMed  PubMed Central  Google Scholar 

  37. R.E. Smith, J.A. Maguire, A.N. Stein-Oakley, H. Sasano, K. Takahashi, K. Fukushima, Z.S. Krozowski, Localization of 11 beta-hydroxysteroid dehydrogenase type II in human epithelial tissues. J. Clin. Endocrinol. Metab. 81(9), 3244–3248 (1996). doi:10.1210/jcem.81.9.8784076

    CAS  PubMed  Google Scholar 

  38. T. Stalder, C. Kirschbaum, K. Heinze, S. Steudte, P. Foley, A. Tietze, L. Dettenborn, Use of hair cortisol analysis to detect hypercortisolism during wactive drinking phases in alcohol-dependent individuals. Biol. Psychol. 85(3), 357–360 (2010). doi:10.1016/j.biopsycho.2010.08.005

    Article  PubMed  Google Scholar 

  39. M.A.B. Veldhorst, G. Noppe, M.H.T.M. Jongejan, C.B.M. Kok, S. Mekic, J.W. Koper, E.F.C. van Rossum, E.L.T. van den Akker, Increased scalp hair cortisol concentrations in obese children. J. Clin. Endocrinol. Metab. 99(1), 285–290 (2014). doi:1w0.1210/jc.2013-2924

    Article  CAS  PubMed  Google Scholar 

  40. V.L. Wester, S.M. Staufenbiel, M.A.B. Veldhorst, J.A. Visser, L. Manenschijn, J.W. Koper, F.J.M. Klessens-Godfroy, E.L.T. Van Den Akker, E.F.C. Van Rossum, Long-term cortisol levels measured in scalp hair of obese patients. Obesity 22(9), 1956–1958 (2014). doi:10.1002/oby.20795

    Article  CAS  PubMed  Google Scholar 

  41. L. Dettenborn, C. Muhtz, N. Skoluda, T. Stalder, S. Steudte, K. Hinkelmann, C. Kirschbaum, C. Otte, Introducing a novel method to assess cumulative steroid concentrations: Increased hair cortisol concentrations over 6 months in medicated patients with depression. Stress 15(3), 348–353 (2012). doi:10.3109/10253890.2011.619239

    Article  CAS  PubMed  Google Scholar 

  42. A. Herane Vives, V. De Angel, A. Papadopoulos, R. Strawbridge, T. Wise, A.H. Young, D. Arnone, A.J. Cleare, The relationship between cortisol, stress and psychiatric illness: new insights using hair analysis. J. Psychiatr. Res. 70, 38–49 (2015)

    Article  CAS  PubMed  Google Scholar 

  43. E. Charmandari, P.C. Hindmarsh, A. Johnston, C.G. Brook, Congenital adrenal hyperplasia due to 21-hydroxylase deficiency: alterations in cortisol pharmacokinetics at puberty. J. Clin. Endocrinol. Metab. 86(6), 2701–2708 (2001). doi:10.1210/jcem.86.6.7522

    Article  CAS  PubMed  Google Scholar 

  44. C.C. Dupuis, H.L. Storr, L.A. Perry, J.T. Ho, L. Ahmed, K.K. Ong, D.B. Dunger, J.P. Monson, A.B. Grossman, G.M. Besser, M.O. Savage, Abnormal puberty in paediatric Cushing’s disease: relationship with adrenal androgen, sex hormone binding globulin and gonadotrophin concentrations. Clin. Endocrinol. (Oxf). 66(6), 838–843 (2007). doi:10.1111/j.1365-2265.2007.02822.x

    Article  CAS  PubMed  Google Scholar 

  45. G.L. Henderson, Mechanisms of drug incorporation into hair. Forensic Sci. Int. 63, 19–29 (1993)

    Article  CAS  PubMed  Google Scholar 

  46. J. Barbosa, J. Faria, F. Carvalho, M. Pedro, O. Queirós, R. Moreira, R.J. Dinis-Oliveira, Hair as an alternative matrix in bioanalysis. Bioanalysis 5(8), 895–914 (2013)

    Article  CAS  PubMed  Google Scholar 

  47. S. Pang, H. Wu, Q. Wang, M. Cai, W. Shi, J. Shang, Chronic stress suppresses the expression of cutaneous hypothalamic-pituitary-adrenocortical axis elements and melanogenesis. PLoS One 9(5), e98283 (2014). doi:10.1371/journal.pone.0098283

    Article  PubMed  PubMed Central  Google Scholar 

  48. S. Vukelic, O. Stojadinovic, I. Pastar, M. Rabach, A. Krzyzanowska, E. Lebrun, S.C. Davis, S. Resnik, H. Brem, M. Tomic-Canic, Cortisol synthesis in epidermis is induced by IL-1 and tissue injury. J. Biol. Chem. 286(12), 10265–10275 (2011). doi:10.1074/jbc.M110.188268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. A. Tiganescu, A.A. Tahrani, S.A. Morgan, M. Otranto, A. Desmouliere, L. Abrahams, Z. Hassan-Smith, E.A. Walker, E.H. Rabbitt, M.S. Cooper, K. Amrein, G.G. Lavery, P.M. Stewart, 11beta-hydroxysteroid dehydrogenase blockade prevents age-induced skin structure and function defects. J. Clin. Invest. 123(7), 3051–3060 (2013). doi:10.1172/jci64162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. P.M. Stewart, B.R. Walker, G. Holder, D. O’Halloran, C.H. Shackleton, 11 beta-Hydroxysteroid dehydrogenase activity in Cushing’s syndrome: explaining the mineralocorticoid excess state of the ectopic adrenocorticotropin syndrome. J. Clin. Endocrinol. Metab. 80(12), 3617–3620 (1995). doi:10.1210/jcem.80.12.8530609

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), clinical trials NCT00005927 (Clinical and Molecular Analysis of ACTH-Independent Steroid Hormone Production in Adrenocortical Tissue) and NCT00001595 (A Clinical and Genetic Investigation of Pituitary Tumors and Related Hypothalmic Disorders). We thank the nurses of the NIH Clinical Research Center for assistance with hair cortisol collection. We thank Diane Cooper, MSLS, NIH Library, for assistance in writing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihail Zilbermint.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This article does not contain any studies with animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Aaron Hodes, Maya B. Lodish, Constantine A. Stratakis, and Mihail Zilbermint have contributed equally to this manuscript.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hodes, A., Lodish, M.B., Tirosh, A. et al. Hair cortisol in the evaluation of Cushing syndrome. Endocrine 56, 164–174 (2017). https://doi.org/10.1007/s12020-017-1231-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-017-1231-7

Keywords

Navigation